Участник:Василий Ломакин/Критерий Уилкоксона для связных выборок
Материал из MachineLearning.
Строка 7: | Строка 7: | ||
# Дополнительные предположения | # Дополнительные предположения | ||
# Ссылка на что такое связки | # Ссылка на что такое связки | ||
+ | # Иллюстрации - критическая область, мощность и т.п. | ||
- | '''Критерий Уилкоксона для связных выборок''' — [[непараметрический статистический критерий]], применяющийся для связанных пар наблюдений. Наиболее часто используется для проверки гипотезы о равенстве средних в двух зависимых выборках. Является аналогом | + | '''Критерий Уилкоксона для связных выборок''' — [[непараметрический статистический критерий]], применяющийся для связанных пар наблюдений. Наиболее часто используется для проверки гипотезы о равенстве средних в двух зависимых выборках. Является аналогом [[Критерий_Стьюдента|t-критерия Стьюдента для парных наблюдений]] в случае закона распределения, отличного от нормального, либо для данных в нечисловой шкале. |
== Пример задачи == | == Пример задачи == |
Версия 21:12, 11 декабря 2009
TODO:
- Пример
- Критерий для коротких выборок
- Свойства и границы применимости критерия
- Всё ли я извлёк из обоих книг?
- Ссылки на англоязычную литературу
- Дополнительные предположения
- Ссылка на что такое связки
- Иллюстрации - критическая область, мощность и т.п.
Критерий Уилкоксона для связных выборок — непараметрический статистический критерий, применяющийся для связанных пар наблюдений. Наиболее часто используется для проверки гипотезы о равенстве средних в двух зависимых выборках. Является аналогом t-критерия Стьюдента для парных наблюдений в случае закона распределения, отличного от нормального, либо для данных в нечисловой шкале.
Содержание |
Пример задачи
Описание критерия
Заданы две выборки .
Дополнительные предположения:
- простые выборки ????
- выборки связные, то есть элементы соответствуют одному и тому же объекту, но измерения сделаны в разные моменты (например, до и после обработки).
Статистика критерия:
- Рассчитать значения разностей пар двух выборок. Нулевые разности далее не учитываются. - количество ненулевых разностей.
- Проранжировать модули разностей пар в возрастающем порядке.
- Приписать рангам знаки соответствующих им разностей.
- Рассчитать сумму положительных рангов.
Критерий (при уровне значимости ):
Против альтернативы :
- если больше табличного значения критерия знаковых рангов Уилкоксона с уровнем значимости и числом степеней свободы , то нулевая гипотеза отвергается.
Асимптотический критерий:
Рассмотрим нормированную и центрированную статистика Уилкоксона:
- ;
асимптотически имеет стандартное нормальное распределение при .
При наличии связок необходимо учесть их с помощью поправки. Выражение под корнем в знаменателе необходимо заменить на следующее:
- где - количество связок, - их размеры.
Другие гипотезы:
средняя разница между значениями пар двух выборок равна заданной константе A.
средняя разница не равна A.
В этом случае из каждой разности вычитается значение A, и дальнейшая обработка выполняется по описанной схеме.
Свойства и границы применимости критерия
м?
Литература
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 164-166 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 457-458 с.
Ссылки
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Критерий Уилкоксона-Манна-Уитни