Вероятностные тематические модели (курс лекций, К.В.Воронцов)
Материал из MachineLearning.
м (→Литература) |
|||
Строка 277: | Строка 277: | ||
=Литература= | =Литература= | ||
- | # ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Обзор вероятностных тематических моделей]]. | + | # ''Воронцов К. В.'' [[Media:voron17survey-artm.pdf|Обзор вероятностных тематических моделей]]. 2019. |
# ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017. | # ''Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng.'' [https://arxiv.org/ftp/arxiv/papers/1711/1711.04305.pdf Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey]. 2017. | ||
# ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57. | # ''Hofmann T.'' Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57. |
Версия 11:29, 5 февраля 2019
Спецкурс читается студентам 2—5 курсов на кафедре «Математические методы прогнозирования» ВМиК МГУ с 2013 года.
В спецкурсе изучается вероятностное тематическое моделирование (topic modeling) коллекций текстовых документов. Тематическая модель определяет, какие темы содержатся в большой текстовой коллекции, и к каким темам относится каждый документ. Тематические модели позволяют искать тексты по смыслу, а не по ключевым словам, и создавать информационно-поисковые системы нового поколения, основанные на парадигме семантического разведочного поиска (exploratory search). Рассматриваются тематические модели для классификации, категоризации, сегментации, суммаризации текстов естественного языка, а также для рекомендательных систем, анализа банковских транзакционных данных, анализа биомедицинских сигналов. В спецкурсе развивается многокритериальный подход к построению моделей с заданными свойствами — аддитивная регуляризация тематических моделей (АРТМ). Он основан на регуляризации некорректно поставленных задач стохастического матричного разложения. Особое внимание уделяется методам лингвистической регуляризации для моделирования связности текста. Предполагается проведение студентами численных экспериментов на модельных и реальных данных с помощью библиотеки тематического моделирования BigARTM.
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации, машинного обучения, языков программирования Python и С++ желательно, но не обязательно.
Материалы для первого ознакомления:
- Тематический анализ больших данных. Краткое популярное введение в BigARTM.
- Разведочный информационный поиск. Видеолекция на ПостНауке.
- Тематическое моделирование. FAQ на ПостНауке, совместно с Корпоративным университетом Сбербанка.
- Тематическое моделирование на пути к разведочному информационному поиску. Лекция на DataFest3, 10 сентября 2016. Видеозапись.
Основной материал:
- Воронцов К. В. Вероятностное тематическое моделирование: обзор моделей и аддитивная регуляризация. — обновление 05.02.2019.
Краткая ссылка на эту страницу: bit.ly/2EGWcjA.
Программа курса
Условием сдачи спецкурса является выполнение индивидуальных практических заданий.
Введение
Презентация: (PDF, 1,2 МБ) — обновление 15.02.2018.
Цели и задачи тематического моделирования.
- Понятие «темы», цели и задачи тематического моделирования.
- Основные предположения. Гипотеза «мешка слов» (bag-of-words). Методы предварительной обработки текстов.
- Вероятностное пространство. Тема как латентная (ненаблюдаемая) переменная. Гипотеза условной независимости.
- Порождающая модель документа как вероятностной смеси тем.
- Упрощённая вероятностная модель текста и элементарное решение обратной задачи
- Постановка обратной задачи восстановления параметров модели по данным.
Математический инструментарий.
- Принцип максимума правдоподобия.
- Условия Каруша–Куна–Таккера.
- Униграммные модели коллекции и документа.
Аддитивная регуляризация тематических моделей.
- Теорема о необходимом условии максимума регуляризованного правдоподобия для ARTM.
- EM-алгоритм и его элементарная интерпретация. Формула Байеса и частотные оценки условных вероятностей.
- Вероятностный латентный семантический анализ (probabilistic latent semantic analysis, PLSA).
- Рациональный ЕМ-алгоритм (встраивание Е-шага внутрь М-шага). Оффлайновый регуляризованный EM-алгоритм.
- Онлайновый регуляризованный EM-алгоритм. Распараллеливание.
- Библиотека BigARTM.
Обзор базовых инструментов
Александр Романенко, Мурат Апишев. Презентация: (zip, 0,6 МБ) — обновление 17.02.2017.
Предварительная обработка текстов
- Парсинг "сырых" данных.
- Токенизация, стемминг и лемматизация.
- Выделение энграмм.
- Законы Ципфа и Хипса. Фильтрация словаря коллекции. Удаление стоп-слов.
Библиотека BigARTM
- Методологические рекоммендации по проведению экспериментов.
- Установка BigARTM.
- Формат и импорт входных данных.
- Обучение простой модели (без регуляризации): создание, инициализация, настройка и оценивание модели.
- Инструмент визуализации тематических моделей VisARTM. Основные возможности, демонстрация работы.
Дополнительный материал:
- Презентация: (PDF, 1,5 МБ) — обновление 17.03.2017.
- Видео — обновление 22.03.2017.
- Воркшоп по BigARTM на DataFest'4. Видео.
Аддитивная регуляризация тематических моделей
Презентация: (PDF, 3,1 МБ) — обновление 15.03.2018.
Теория ARTM
- Мультимодальные тематические модели
- Регуляризаторы сглаживания и разреживания
- Разделение тем на предметные и фоновые
Время и пространство
- Регуляризаторы времени
- Эксперименты на коллекции пресс-релизов
- Гео-пространственные модели
Иерархические тематические модели
- Нисходящая послойная стратегия
- Оценивание качества тематических иерархий
- Визуализация иерархии
Разведочный информационный поиск
Презентация: (PDF, 4,5 МБ) — обновление 15.03.2018.
Разведочный информационный поиск
- Концепция разведочного поиска
- Визуализация больших текстовых коллекций
- Сценарий разведочного поиска
Эксперименты с тематическим поиском
- Методика эксперимента
- Построение тематической модели
- Оптимизация гиперпараметров
Эксперименты с тематическими моделями
- Измерение качества тематической модели
- Многокритериальное оценивание качества модели
- Определение числа тем и регуляризатор отбора тем
Дополнительный материал:
- Разведочный информационный поиск (exploratory search). Видео.
Мультимодальные тематические модели
Презентация: (PDF, 1,4 МБ) — обновление 22.03.2018.
Мультиязычные тематические модели.
- Параллельные и сравнимые коллекции.
- Регуляризаторы для учёта двуязычных словарей.
- Кросс-язычный информационный поиск.
Зависимости, корреляции, связи.
- Тематические модели классификации и регрессии.
- Модель коррелированных тем CTM (Correlated Topic Model).
- Регуляризаторы гиперссылок и цитирования. Выявление тематических влияний в научных публикациях.
Социальные сети.
- Выявление тематических сообществ. Регуляризаторы для направленных и ненаправленных связей.
- Регуляризаторы для выявления социальных ролей пользователей.
Тематические модели совстречаемости слов
Презентация: (PDF, 1,9 МБ) — обновление 29.03.2018.
Мультиграммные модели.
- Модель BigramTM.
- Модель Topical N-grams (TNG).
- Мультимодальная мультиграммная модель.
Автоматическое выделение терминов.
- Алгоритм TopMine для быстрого поиска частых фраз. Критерии выделения коллокаций.
- Синтаксический разбор. Нейросетевой синтаксический анализатор SyntaxNet.
- Критерии тематичности фраз.
- Комбинирование синтаксической, статистической и тематической фильтрации фраз.
Тематические модели дистрибутивной семантики.
- Дистрибутивная гипотеза. Модели CBOW и SGNS в программе word2vec.
- Модель битермов BTM (Biterm Topic Model) для тематизации коллекций коротких текстов.
- Модели WNTM (Word Network Topic Model) и WTM (Word Topic Model). Связь с моделью word2vec.
- Понятие когерентности (согласованности). Экспериментально установленная связь когерентности и интерпретируемости.
- Регуляризаторы когерентности.
Дополнительный материал:
- Потапенко А. А. Векторные представления слов и документов. DataFest'4. Видео.
Байесовское обучение тематических моделей
Презентация: (PDF, 1,5 МБ) — обновление 13.04.2018.
EM-алгоритм.
- Задачи оценивания скрытых параметров вероятностной модели.
- EM-алгоритм для максимизации неполного правдоподобия. Сходимость в слабом смысле.
- EM-алгоритм для модели PLSA.
- EM-алгоритм с регуляризацией.
Методы оценивания параметров в модели LDA.
- Распределение Дирихле и его свойства. Сопряжённость с мультиномиальным распределением.
- Максимизация апостериорной вероятности для модели LDA.
- Вариационный байесовский вывод для модели LDA.
- Сэмплирование Гиббса для модели LDA.
- Оптимизация гиперпараметров распределения Дирихле.
Языки описания вероятностных порождающих моделей.
- Графическая плоская нотация (plate notation). Stop using plate notation.
- Псевдокод порождающего процесса (genarative story).
- Постановки оптимизационных задач.
- Как читать статьи по баейсовским моделям и строить эквивалентные ARTM-модели.
Дополнительный материал:
- Потапенко А. А. Байесовское обучение тематических моделей. 2016.
Тематическая сегментация
Презентация: (PDF, 2,0 МБ) — обновление 16.04.2018.
Модели связного текста.
- Тематическая модель предложений и модель коротких сообщений Twitter-LDA.
- Контекстная документная кластеризация (CDC).
- Метод лексических цепочек.
Тематическая сегментация.
- Метод TopicTiling. Критерии определения границ сегментов.
- Критерии качества сегментации. Оптимизация параметров модели TopicTiling.
Позиционный регуляризатор в ARTM.
- Гипотеза о сегментной структуре текста.
- Регуляризация и пост-обработка Е-шага. Формулы М-шага.
- Примеры регуляризаторов Е-шага. Разреживание распределения p(t|d,w). Сглаживание тематики слов по контексту.
Визуализация и суммаризация тем
Презентация: (PDF, 6,7 МБ) — обновление 01.05.2018.
Средства визуализации тематических моделей.
- Минимальные средства визуализации.
- Визуализация кластерных структур.
- Визуализация темпоральных, иерархических, сегментирующих моделей.
Визуализатор VisARTM.
- Проект VisARTM.
- Обзор средств визуализации VisARTM.
- Задача построения тематического спектра.
Методы суммаризации текстов.
- Задачи автоматической суммаризации текстов. Подходы к суммаризации: extractive и abstractive.
- Оценивание и отбор предложений для суммаризации. Релаксационный метод для многокритериальной дискретной оптимизации.
- Тематическая модель предложений для суммаризации.
- Критерии качества суммаризации ROUGE.
Анализ разнородных данных
Презентация: (PDF, 1,6 МБ) — обновление 03.05.2018.
Трёхматричные и гиперграфовые модели.
- Модели трёхматричных разложений. Понятие порождающей модальности.
- Автор-тематическая модель (author-topic model).
- Модель для выделения поведений объектов в видеопотоке.
Тематические модели транзакционных данных.
- Примеры транзакционных данных в рекомендательных системах, социальных и рекламных сетях.
- Гиперграфовая модель ARTM. Теорема о необходимом условии максимума регуляризованного правдоподобия.
- Анализ транзакционных данных для выявления паттернов экономического поведения клиентов банка. Видео.
- Анализ банковских транзакционных данных для выявления видов деятельности компаний.
Определение числа тем.
- Регуляризатор отбора тем.
- Эффект отбрасывания малых, дублирующих и линейно зависимых тем.
- Сравнение с байесовской моделью HDP (Hierarchical Dirichlet Process).
Автоматическое именование тем (topic labeling).
- Формирование названий-кандидатов.
- Максимизация релевантности, покрытия и различности.
Литература
- Воронцов К. В. Обзор вероятностных тематических моделей. 2019.
- Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng. Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. 2017.
- Hofmann T. Probabilistic latent semantic indexing // Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. — New York, NY, USA: ACM, 1999. — Pp. 50–57.
- Blei D. M., Ng A. Y., Jordan M. I. Latent Dirichlet allocation // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 993–1022.
- Asuncion A., Welling M., Smyth P., Teh Y. W. On smoothing and inference for topic models // Proceedings of the International Conference on Uncertainty in Artificial Intelligence. — 2009.
- Янина А. О., Воронцов К. В. Мультимодальные тематические модели для разведочного поиска в коллективном блоге // Машинное обучение и анализ данных. 2016. T.2. №2. С.173-186.
Ссылки
- Тематическое моделирование
- Аддитивная регуляризация тематических моделей
- Коллекции документов для тематического моделирования
- BigARTM
- Видеозапись лекции на ТМШ, 19 июня 2015
- Воронцов К.В. Практическое задание по тематическому моделированию, 2014.
Подстраницы
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2015 | Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2016 | Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2017 |
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2018 | Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2019, ВМК | Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2020 |
Вероятностные тематические модели (курс лекций, К.В.Воронцов)/2021 |