Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
(→История) |
(→Ссылки) |
||
Строка 89: | Строка 89: | ||
==Ссылки== | ==Ссылки== | ||
(для ссылок на внешние URL) | (для ссылок на внешние URL) | ||
+ | == Ссылки == | ||
+ | * [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез. | ||
+ | * [[Статистика (функция выборки)]] | ||
+ | * [http://en.wikipedia.org/wiki/Student%27s_t-test Student's t-test] (Wikipedia). | ||
+ | * [http://ru.wikipedia.org/wiki/%D0%9A%D1%80%D0%B8%D1%82%D0%B5%D1%80%D0%B8%D0%B9_%D0%A1%D1%82%D1%8C%D1%8E%D0%B4%D0%B5%D0%BD%D1%82%D0%B0 t-критерий Стьюдента] (Википедия). | ||
+ | * [http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A1%D1%82%D1%8C%D1%8E%D0%B4%D0%B5%D0%BD%D1%82%D0%B0 Распределение Стьюдента] (Википедия). | ||
+ | * [http://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D0%BB%D0%B8_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F_%D0%A1%D1%82%D1%8C%D1%8E%D0%B4%D0%B5%D0%BD%D1%82%D0%B0 Квантили распределения Стьюдента] (Википедия). | ||
==См. также== | ==См. также== |
Версия 10:19, 12 декабря 2009
Статьи о группах методов или критериев
Некоторые рекомендации
— К.В.Воронцов 02:14, 14 ноября 2009 (MSK) |
Ссылки на источники обязательны. Если Вы упоминаете другие понятия прикладной статистики (в том числе названия статистических критериев), оформляйте их как ссылки на страницы внутри Ресурса. В конце каждой статьи не забывайте про разделы ==Литература== (для книг), ==Ссылки== (для ссылок на внешние URL), ==См. также== (для ссылок на страницы внутри Ресурса).
Двухфакторная непараметрическая модель.
новая статья
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
Литература
(для книг)
Ссылки
(для ссылок на внешние URL)
См. также
(для ссылок на страницы внутри Ресурса).
Дисперсионный анализ
общие определения, примеры задач и перечень методов (в виде списка ссылок)
|
Цель дисперсионного анализа
Основной целью дисперсионного анализа (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений). Если вы не достаточно знакомы с этими критериями, рекомендуем обратиться к разделу Основные статистики и таблицы.
История
Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ.
Разбиение суммы квадратов
Многофакторный дисперсионный анализ
Эффекты взаимодействия
Также смотрите разделы. Сложные планы Ковариационный анализ (ANCOVA) Многомерные планы: многомерный дисперсионный и ковариационный анализ Анализ контрастов и апостериорные критерии Предположения и эффекты их нарушения
См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанная модель ANOVA/ANCOVA, а также Планироване эксперимента.
t-критерий Стьюдента — общее название для статистических тестов, в которых статистика критерия имеет распределение Стьюдента. Наиболее часто t-критерии применяются для проверки равенства средних значений в двух выборках. Нулевая гипотеза предполагает, что средние равны (отрицание этого предположения называют гипотезой сдвига).
Все разновидности критерия Стьюдента являются параметрическими и основаны на дополнительном предположении о нормальности выборки данных. Поэтому перед применением критерия Стьюдента рекомендуется выполнить проверку нормальности. Если гипотеза нормальности отвергается, можно проверить другие распределения, если и они не подходят, то следует воспользоваться непараметрические статистические тесты.
Дисперсионный анализ (ANOVA)
[Лапач, 193, Кулаичев, 170].
- Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж.
- Однофакторная параметрическая модель: метод Шеффе.
- Однофакторная непараметрическая модель: критерий Краскела-Уоллиса, критерий Джонкхиера.
- Общий случай модели с постоянными факторами, теорема Кокрена.
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
- Двухфакторный нормальный анализ.
- Ковариационный анализ (постановка задачи).
Литература
(для книг)
- Шеффе Г. Дисперсионный анализ. — М., 1980.
Ссылки
(для ссылок на внешние URL)
Ссылки
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Статистика (функция выборки)
- Student's t-test (Wikipedia).
- t-критерий Стьюдента (Википедия).
- Распределение Стьюдента (Википедия).
- Квантили распределения Стьюдента (Википедия).
См. также
(для ссылок на страницы внутри Ресурса).