Участник:Пасконова Ольга/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Ссылки)
Строка 55: Строка 55:
Основной целью '''дисперсионного анализа''' (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности [[Нулевая гипотеза| нулевой гипотезы]] (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух [[выборка]]х, дисперсионный анализ даст тот же результат, что и обычный [[Критерий Стьюдента|t-критерий]] для независимых [[выборка|выборок]] (если сравниваются две независимые группы объектов или наблюдений) или [[Критерий Стьюдента|t-критерий]] для зависимых [[выборка|выборок]] (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).
Основной целью '''дисперсионного анализа''' (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности [[Нулевая гипотеза| нулевой гипотезы]] (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух [[выборка]]х, дисперсионный анализ даст тот же результат, что и обычный [[Критерий Стьюдента|t-критерий]] для независимых [[выборка|выборок]] (если сравниваются две независимые группы объектов или наблюдений) или [[Критерий Стьюдента|t-критерий]] для зависимых [[выборка|выборок]] (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).
-
==История==
+
==Модель дисперсионного анализа==
-
Откуда произошло название '''Дисперсионный анализ'''? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ.
+
==Примеры задач==
 +
==Перечень методов==
Разбиение суммы квадратов
Разбиение суммы квадратов
Многофакторный дисперсионный анализ
Многофакторный дисперсионный анализ
Эффекты взаимодействия
Эффекты взаимодействия
-
 
Также смотрите разделы.
Также смотрите разделы.
Сложные планы
Сложные планы
Строка 72: Строка 72:
См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанная модель ANOVA/ANCOVA, а также Планироване эксперимента.
См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанная модель ANOVA/ANCOVA, а также Планироване эксперимента.
-
 
-
 
-
 
-
 
-
 
-
'''t-критерий Стьюдента''' — общее название для [[статистический тест|статистических тестов]], в которых статистика критерия имеет [[распределение Стьюдента]].
 
-
Наиболее часто t-критерии применяются для проверки равенства средних значений в двух [[выборка]]х.
 
-
[[Нулевая гипотеза]] предполагает, что средние равны (отрицание этого предположения называют [[гипотеза сдвига|гипотезой сдвига]]).
 
-
 
-
Все разновидности критерия Стьюдента являются параметрическими и основаны на дополнительном предположении о нормальности выборки данных.
 
-
Поэтому перед применением критерия Стьюдента рекомендуется выполнить [[Критерии нормальности|проверку нормальности]].
 
-
Если гипотеза нормальности отвергается, можно проверить другие распределения, если и они не подходят, то следует воспользоваться [[:Категория:Непараметрические статистические тесты|непараметрические статистические тесты]].
 
-
 
Дисперсионный анализ (ANOVA)
Дисперсионный анализ (ANOVA)
Строка 95: Строка 82:
* [[Двухфакторный нормальный анализ]].
* [[Двухфакторный нормальный анализ]].
* [[Ковариационный анализ]] (постановка задачи).
* [[Ковариационный анализ]] (постановка задачи).
 +
 +
==История==
 +
 +
Откуда произошло название '''Дисперсионный анализ'''? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ.
 +
==Литература==
==Литература==

Версия 11:09, 12 декабря 2009

Статьи о группах методов или критериев

Некоторые рекомендации
  1. Эти статьи не содержат описаний методов, но в них должны перечисляться ссылки на большое число методов или критериев, объединённых под данным общим названием.
  2. Должно даваться общее определение из классических источников (например, из энциклопедии теории вероятностей и математической статистики).
  3. Желательны примеры задач.
  4. Желательно указывать, чем отличаются различные критерии и методы в данной группе друг от друга, какие есть рекомендации по выбору одного из этих методов.
  5. Любые сообщаемые факты должны сопровождаться ссылками на источник.
  6. Помните, что предоставляемая информация должна быть полезна специалистам при решении практических задач.
  7. Собрать грамотную подборку ссылок (вместо тупого копирования их содержимого) с вашими лаконичными комментариями — это уже очень полезно!

— К.В.Воронцов 02:14, 14 ноября 2009 (MSK)



Ссылки на источники обязательны. Если Вы упоминаете другие понятия прикладной статистики (в том числе названия статистических критериев), оформляйте их как ссылки на страницы внутри Ресурса. В конце каждой статьи не забывайте про разделы ==Литература== (для книг), ==Ссылки== (для ссылок на внешние URL), ==См. также== (для ссылок на страницы внутри Ресурса).

Двухфакторная непараметрическая модель.

новая статья

Литература

(для книг)

Ссылки

(для ссылок на внешние URL)

См. также

(для ссылок на страницы внутри Ресурса).

Дисперсионный анализ

общие определения, примеры задач и перечень методов (в виде списка ссылок)

Содержание

Дисперсионный анализ(ANOVA) применяется для исследования влияния одной или нескольких качественных переменных (факторов) на одну зависимую количественную переменную (отклик).


Дисперсионный анализ, предложенный Р. Фишером, является статистическим методом, предназначенным для выявления влияния ряда отдельных факторов на результаты экспериментов.

В основе дисперсионного анализа лежит предположение о том, что одни переменные могут рассматриваться как причины (факторы, независимые переменные), а другие как следствия (зависимые переменные). Независимые переменные называют иногда регулируемыми факторами именно потому, что в эксперименте исследователь имеет возможность варьировать ими и анализировать получающийся результат.

Сущность дисперсионного анализа заключается в расчленении общей дисперсии изучаемого признака на отдельные компо­ненты, обусловленные влиянием конкретных факторов, и проверке гипотез о значимости влияния этих факторов на исследуемый признак. Сравнивая компоненты дисперсии друг с другом посредством F — критерия Фишера, можно определить, какая доля общей вариативности результативного признака обусловлена действием регулируемых факторов.

Исходным материалом для дисперсионного анализа служат данные исследования трех и более выборок, которые могут быть как равными, так и неравными по численности, как связными, так и несвязными. По количеству выявляемых регулируемых факторов дисперсионный анализ может быть однофакторным (при этом изучается влияние одного фактора на результаты эксперимента), двухфакторным (при изучении влияния двух факторов) и многофакторным (позволяет оценить не только влияние каждого из факторов в отдельности, но и их взаимодействие).

Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда доказано, что распределение является нормальным. (Суходольский Г.В., 1972; Шеффе Г., 1980).

Цель дисперсионного анализа

Основной целью дисперсионного анализа (ANOVA) является исследование значимости различия между средними с помощью сравнения (анализа) дисперсий. Разделение общей дисперсии на несколько источников, позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью. При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. Если вы просто сравниваете средние в двух выборках, дисперсионный анализ даст тот же результат, что и обычный t-критерий для независимых выборок (если сравниваются две независимые группы объектов или наблюдений) или t-критерий для зависимых выборок (если сравниваются две переменные на одном и том же множестве объектов или наблюдений).

Модель дисперсионного анализа

Примеры задач

Перечень методов

Разбиение суммы квадратов Многофакторный дисперсионный анализ Эффекты взаимодействия Также смотрите разделы. Сложные планы Ковариационный анализ (ANCOVA) Многомерные планы: многомерный дисперсионный и ковариационный анализ Анализ контрастов и апостериорные критерии Предположения и эффекты их нарушения

См. также Методы дисперсионного анализа, Компоненты дисперсии и смешанная модель ANOVA/ANCOVA, а также Планироване эксперимента.

Дисперсионный анализ (ANOVA) [Лапач, 193, Кулаичев, 170].

История

Откуда произошло название Дисперсионный анализ? Может показаться странным, что процедура сравнения средних называется дисперсионным анализом. В действительности, это связано с тем, что при исследовании статистической значимости различия между средними двух (или нескольких) групп, мы на самом деле сравниваем (т.е. анализируем) выборочные дисперсии. Фундаментальная концепция дисперсионного анализа предложена Фишером в 1920 году. Возможно, более естественным был бы термин анализ суммы квадратов или анализ вариации, но в силу традиции употребляется термин дисперсионный анализ.


Литература

(для книг)

  1. Шеффе Г. Дисперсионный анализ. — М., 1980.

Ссылки

(для ссылок на внешние URL)

Ссылки

См. также

(для ссылок на страницы внутри Ресурса).

Личные инструменты