Участник:A m0r0z0v

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Осень 2018)
(Весна 2018)
Строка 18: Строка 18:
'''Доклад на научной конференции'''
'''Доклад на научной конференции'''
*{{биб.статья
*{{биб.статья
-
|автор = O. Krasotkina, A. Morozov M. Markov, V. Mottl, D. Babichev, I. Pugach
+
|автор = O. Krasotkina, V. Mottl, A. Morozov, D. Babichev, I. Pugach, M. Markov
|заглавие = Constrained Regularized Regression Model Search in Large Sets of Regressors
|заглавие = Constrained Regularized Regression Model Search in Large Sets of Regressors
-
|издание = Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, Springer, 2018
+
|издание = Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science, vol 10935. Springer, Cham
 +
|год = 2018
 +
|число = 8
 +
|месяц = July
 +
|язык = English
 +
|страницы = 394--408
 +
|doi = https://doi.org/10.1007/978-3-319-96133-0_30
 +
|isbn = 978-3-319-96133-0
|url = http://machinelearning.ru/wiki/images/e/e2/IDP18.pdf
|url = http://machinelearning.ru/wiki/images/e/e2/IDP18.pdf
}}
}}
 +
DOI: https://doi.org/10.1007/978-3-319-96133-0_30
 +
 +
ISBN: 978-3-319-96133-0
 +
 +
[https://link.springer.com/chapter/10.1007/978-3-319-96133-0_30 Ссылка на статью]
=== Осень 2018===
=== Осень 2018===

Версия 08:37, 22 мая 2019

Морозов Алексей Олегович

МФТИ, ФУПМ

Кафедра "Интеллектуальные системы"

Направление "Интеллектуальный анализ данных"

ao.morozov@phystech.edu

Содержание

Отчеты о научно-исследовательской работе

Весна 2018

Идентификации модели нестационарного портфеля по временному ряду его доходностей и большому массиву доходностей биржевых активов

Разработаны алгоритмы регуляризации моделей инвестиционных портфелей по принципу минимума риска разорения. Принята к печати научная статья в журнале Springer.

Доклад на научной конференции

  • O. Krasotkina, V. Mottl, A. Morozov, D. Babichev, I. Pugach, M. Markov Constrained Regularized Regression Model Search in Large Sets of Regressors // Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science, vol 10935. Springer, Cham. — 2018. — С. 394--408.

DOI: https://doi.org/10.1007/978-3-319-96133-0_30

ISBN: 978-3-319-96133-0

Ссылка на статью

Осень 2018

Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей

Обеспечена линейная вычислительная сложность алгоритма поиска состава портфеля в очень большом множестве всех биржевых активов, в то время, как сложность по относительно небольшому числу наблюдений остается полиномиальной.

Доклад на научной конференции

  • Моттль В. В., Морозов А. О., Красоткина О. В., Медведев А. В. Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей // Интеллектуализация обработки информации (ИОИ-2018): Тезисы докл.— Москва: Торус Пресс, 2018. С. 104–105..

Презентация

  • Моттль В. В., Морозов А. О., Красоткина О. В. Оценивание состава инвестиционного портфеля в большом множестве биржевых активов // Интеллектуализация обработки информации (ИОИ-2018): Тезисы докл.— Москва: Торус Пресс, 2018. С. 100–101..

Презентация

Доклад на научной конференции

  • Морозов А. О., Моттль В. В. Алгоритмическая реализация методологии оценивания состава инвестиционных портфелей // 61-я Всероссийская научная конференция МФТИ: Труды, Прикладная математика и информатика — МФТИ, 2018. С. 116–118..

Тезисы

Весна 2019

Алгоритмическая реализация восстановления зависимостей произвольного вида в больших массивах данных

Исследован класс обобщенных линейных моделей зависимостей, включающий модели числовой регрессии и двухклассового распознавания образов в типичной для практики ситуации, когда вектор признаков объектов имеет очень большую размерность, а число объектов в обучающей совокупности относительно невелико. Установлено, что вычислительная сложность таких задач линейна по числу признаков и полиномиальна по размеру обучающей совокупности.

Публикация

  • V. Mottl, A. Morozov, O. Krasotkina, V. Sulimova, I. Pugach, A. Tatarchuk Linear complexity algorithms for high dimensional SVM and regression problems with smart sparse regularization. — 2019.

Ссылка на статью

Личные инструменты