Участник:Пасконова Ольга/Песочница
Материал из MachineLearning.
(Различия между версиями)
(→Двухфакторная непараметрическая модель) |
(→Двухфакторная непараметрическая модель) |
||
Строка 23: | Строка 23: | ||
'''2.''' Все <tex>\epsilon_{ij}</tex> имеют одинаковое непрерывное (неизвестное) распределение. | '''2.''' Все <tex>\epsilon_{ij}</tex> имеют одинаковое непрерывное (неизвестное) распределение. | ||
+ | |||
+ | ==Критерий Фридмана== | ||
+ | |||
+ | <tex>H_0</tex> | ||
+ | |||
+ | ==Критерий Пейджа== | ||
==История== | ==История== |
Версия 10:34, 16 декабря 2009
Содержание |
Двухфакторная непараметрическая модель
- Двухфакторная непараметрическая модель: критерий Фридмана [Лапач, 203], критерий Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов.
Данные.
В каждом из блоков содержится по одному наблюдению на каждуб из обработок. Будем считать наблюдения реализацией случайных велечин в модели
, где .
Здесь - неизвестное общее среднее, - эффект блока (неизвестный мешающий параметр), - эффект блока (интересующий нас параметр), - случайная ошибка
Допущения.
1. Все ошибки независимы.
2. Все имеют одинаковое непрерывное (неизвестное) распределение.
Критерий Фридмана
Критерий Пейджа
История
Литература
- Шеффе Г. Дисперсионный анализ. — М., 1980.
- Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ.
- Холлендер М., Вульф Д.А. Непараметрические методы статистики.
Ссылки
- Дисперсионный анализ — Электронный учебник StatSoft.
- Дисперсионный анализ - Аналитическая статистика.
- Многофакторный дисперсионный анализ - Электронная библиотека.
См. также
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Статистический анализ данных (курс лекций, К.В.Воронцов)
- Регрессионный анализ
- Ковариационный анализ