Распределение Стьюдента
Материал из MachineLearning.
(Удален шаблон {{Задание}}. Прошло 11 лет.) |
(→Связь с другими распределениями: Добавлено пояснение) |
||
Строка 59: | Строка 59: | ||
* Представление распределения Стьюдента в виде бесконечной смеси Гауссиан: | * Представление распределения Стьюдента в виде бесконечной смеси Гауссиан: | ||
: Пусть <tex>x \sim \mathrm{t}(x | n, \mu, \sigma^2) \propto (1 + \frac{1}{n} \left( \frac{x - \mu}{\sigma} \right)^2 )^{-\frac{n + 1}{2}}</tex>. Тогда: | : Пусть <tex>x \sim \mathrm{t}(x | n, \mu, \sigma^2) \propto (1 + \frac{1}{n} \left( \frac{x - \mu}{\sigma} \right)^2 )^{-\frac{n + 1}{2}}</tex>. Тогда: | ||
- | : <tex>x \sim t(x | n, \mu, \sigma^2) = \int\limits_{-\infty}^{+\infty} \mathrm{N}(x | \mu, \frac{\sigma^2}{\lambda})\mathrm{G}(\lambda | \frac{n}{2}, \frac{n}{2}) \:\textrm{d}\lambda</tex> | + | : <tex>x \sim t(x | n, \mu, \sigma^2) = \int\limits_{-\infty}^{+\infty} \mathrm{N}(x | \mu, \frac{\sigma^2}{\lambda})\mathrm{G}(\lambda | \frac{n}{2}, \frac{n}{2}) \:\textrm{d}\lambda</tex>, где <tex>\mathrm{N}(x | \mu, \frac{\sigma^2}{\lambda})</tex> - плотность [[Нормальное распределение|нормального распределения]], <tex>\mathrm{G}(\lambda | \frac{n}{2}, \frac{n}{2})</tex> - плотность [[Гамма распределение|гамма распределения]] |
== Применение распределения Стьюдента == | == Применение распределения Стьюдента == |
Версия 07:05, 14 февраля 2020
Плотность вероятности![]() | |
Функция распределения![]() | |
Параметры | |
Носитель | |
Плотность вероятности | |
Функция распределения | |
Математическое ожидание | |
Медиана | |
Мода | |
Дисперсия | |
Коэффициент асимметрии | |
Коэффициент эксцесса | |
Информационная энтропия |
|
Производящая функция моментов | не определена |
Характеристическая функция |
Распределе́ние Стью́дента в теории вероятностей — это однопараметрическое семейство абсолютно непрерывных распределений.
Содержание |
Определение
Пусть — независимые стандартные нормальные случайные величины, такие что
. Тогда распределение случайной величины
, где
называется распределением Стьюдента с степенями свободы. Пишут
. Её распределение абсолютно непрерывно и имеет плотность
-
,
где — гамма-функция Эйлера.
Свойства распределения Стьюдента
- Распределение Стьюдента симметрично. В частности если
, то
-
.
Моменты
Случайная величина имеет только моменты порядков
, причём
-
, если
нечётно;
-
, если
чётно.
В частности,
-
,
-
, если
.
Моменты порядков не определены.
Связь с другими распределениями
- Распределение Коши является частным случаем распределения Стьюдента:
-
.
- Распределение Стьюдента сходится к стандартному нормальному при
. Пусть дана последовательность случайных величин
, где
. Тогда
-
по распределению при
.
- Квадрат случайной величины, имеющей распределение Стьюдента, имеет распределение Фишера. Пусть
. Тогда
-
.
- Представление распределения Стьюдента в виде бесконечной смеси Гауссиан:
- Пусть
. Тогда:
-
, где
- плотность нормального распределения,
- плотность гамма распределения
Применение распределения Стьюдента
Распределение Стьюдента используется в статистике для точечного оценивания, построения доверительных интервалов и тестирования гипотез, касающихся неизвестного среднего статистической выборки из нормального распределения. В частности, пусть независимые случайные величины, такие что
. Обозначим
выборочное среднее этой выборки, а
выборочную оценку её дисперсии. Тогда
-
.