Выбор моделей в машинном обучении (теория и практика, О.Ю. Бахтеев, В.В. Стрижов)/Группа 574, осень 2020

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Зачеты)
м (Темы семинаров)
Строка 14: Строка 14:
# Прямое, обратное преобразование Фурье, его аппроксимация и АР
# Прямое, обратное преобразование Фурье, его аппроксимация и АР
# Спектральная теория графов и АР
# Спектральная теория графов и АР
-
# Применение байесовских методов в биологии и в EM, SRF микроскории
+
# Применение байесовских методов в биологии и в EM, SRF микроскопии
# Применение байесовских методов в теоретической физике
# Применение байесовских методов в теоретической физике
# Экспертное обучение и способы назначения априорных распределений
# Экспертное обучение и способы назначения априорных распределений

Версия 21:25, 1 сентября 2020


Серия семниаров и докладов на тему выбора моделей машинного обучения. Обсуждаются теоретическе аспекты и практика байесовского подхода к выбору моделей. Цель семинаров - обсудить роль информативного априорного распределения (informative prior). Основные вопросы:

  1. Как учитывать экспертные знания при назначении АР (простановка задач байесовского выбора моделей)?
  2. Каким образом связаны теоретические модели прикладной области с информативным АР (интерпретируемость моделей с точки зрения теории)?
  3. Как использовать новую информацию, полученную в результате вывода, придальнейшем назначении АР?

Темы семинаров

  1. Байесовский вывод (повторение).
  2. Вариационный вывод, семплирование, VAR, GAN (повторение)
  3. Оптимизация структур моделей и распределения структурных параметров
  4. Смеси моделей, смеси экспертов и их применение
  5. Прямое, обратное преобразование Фурье, его аппроксимация и АР
  6. Спектральная теория графов и АР
  7. Применение байесовских методов в биологии и в EM, SRF микроскопии
  8. Применение байесовских методов в теоретической физике
  9. Экспертное обучение и способы назначения априорных распределений
  10. GAN и порождение структур агностических моделей
  11. Байесовский подход в теории игр и задачи ИИ
  12. Байесовское программирование и задачи порождения рукописных текстов
  13. Необходимый размер выборки и его приложения в обучении с подкреплением

Темы на выбор

Указать в таблице одну из тем:

Расписание

Дата Автор Тема Автор Тема
16
23
30
7 октября
14
21
28
4 ноября
11
18
25
2 декабря
9

Зачеты

  • По семинарам: анкеты каждую неделю и задачи в конце.
  • По практике: две лекции на 49 минут по заданным темам с голосованием.

Литература

  1. Стрижов В.В. Функция ошибки в задачах восстановления регрессии // Заводская лаборатория. Диагностика материалов, 2013, 79(5) : 65-73.
  2. Kuznetsov M.P., Tokmakova A.A., Strijov V.V. Analytic and stochastic methods of structure parameter estimation // Informatica, 2016, 27(3) : 607-624.
  3. Зайцев А.А., Стрижов В.В., Токмакова А.А. Оценка гиперпараметров регрессионных моделей методом максимального правдоподобия // Информационные технологии, 2013, 2 : 11-15.
  4. Bakhteev O.Y., Strijov V.V. Deep learning model selection of suboptimal complexity // Automation and Remote Control, 2018, 79(8) : 1474–1488.
  5. Bakhteev O.Y., Strijov V.V. Comprehensive analysis of gradient-based hyperparameter optimization algorithmss // Annals of Operations Research, 2020 : 1-15.
Личные инструменты