Глубинное обучение (курс лекций)/2020

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 42: Строка 42:
|-
|-
| Convolutional neural networks, basic architectures. || [https://drive.google.com/file/d/1uSVdPsn5wznk510gS9N1K9DXITpxNFXt/view?usp=sharing Presentation]
| Convolutional neural networks, basic architectures. || [https://drive.google.com/file/d/1uSVdPsn5wznk510gS9N1K9DXITpxNFXt/view?usp=sharing Presentation]
 +
|-
 +
| 25&nbsp;Sep.&nbsp;2020 || 3 || Pytorch and implementation of convolutional neural networks. || [https://github.com/nadiinchi/dl_labs/blob/master/lab_cnn_english.ipynb ipynb 1]<br> [https://github.com/nadiinchi/dl_labs/blob/master/loss_surfaces_lab/lab_loss_surfaces.ipynb ipynb 2]<br>
 +
[https://github.com/nadiinchi/dl_labs/blob/master/lab_pytorch.ipynb ipynb 3]
|-
|-
|}
|}

Версия 11:49, 29 сентября 2020

This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis.

Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.

The timetable in Autumn 2020: Fridays, lectures begin at 10-30, seminars begin at 12-15, zoom-link

Lectures and seminars video recordings: link

Anytask invite code: ldQ0L2R

Course chat in Telegram: link

Rules and grades

TBA

Lectures and seminars

Date No. Topic Materials
11 Sep. 2020 1 Introduction. Fully-connected networks.
Matrix calculus, automatic differentiation. Synopsis
18 Sep. 2020 2 Stochastic optimization for neural networks, drop out, batch normalization.
Convolutional neural networks, basic architectures. Presentation
25 Sep. 2020 3 Pytorch and implementation of convolutional neural networks. ipynb 1
ipynb 2

ipynb 3


Arxiv

2019

2017

2016

Личные инструменты