Математические методы анализа текстов (МФТИ) / 2021

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Контакты)
Строка 174: Строка 174:
<!-- Конец занятия -->
<!-- Конец занятия -->
|}
|}
 +
 +
==Страницы прошлых лет==
 +
 +
* [[Математические методы анализа текстов (курс лекций) / осень 2020]] ВМК & МФТИ
 +
* [[Математические методы анализа текстов (курс лекций) / осень 2019]] ВМК & МФТИ
 +
* [[Математические методы анализа текстов (курс лекций, К.В.Воронцов, А.А.Потапенко)]] — 2018 (ФУПМ МФТИ)
 +
* [[Математические методы анализа текстов (ВМиК МГУ) / 2018]] — 2018 (ВМК МГУ)
 +
* [[Математические методы анализа текстов (ВМиК МГУ) / 2017]] — 2017 (ВМК МГУ)
 +
 +
==Дополнительные материалы==
 +
 +
'''Литература'''
 +
 +
* ''Dan Jurafsky and James H. Martin'' [https://web.stanford.edu/~jurafsky/slp3/ Speech and Language Processing] (3rd ed. draft)
 +
* ''Stewen Bird'' et. al. [http://www.nltk.org/book/ Natural Language Processing with Python]. 2-nd edition. 2016.
 +
* ''Большакова Е.И., Воронцов К.В., Ефремова Н.Э., Клышинский Э.С., Лукашевич Н.В., Сапин А.С.'' [[media:bolshakova17hse-summer-school.pdf|Автоматическая обработка текстов на естественном языке и анализ данных]]. НИУ ВШЭ, 2017.
 +
* ''Yoav Goldberg '' et. al. Neural Network Methods in Natural Language Processing
 +
* LxMLS summer school [http://lxmls.it.pt/2018/LxMLS_guide_2018.pdf Practical guide on NLP in Python]
 +
 +
'''Другие курсы по NLP'''
 +
 +
* [https://web.stanford.edu/class/cs224n/ CS224N: Natural Language Processing with Deep Learning]
 +
* [https://github.com/yandexdataschool/nlp_course YSDA Natural Language Processing course]
 +
* [http://web.stanford.edu/class/cs224u/ CS224U: Natural Language Understanding]
 +
* [https://www.coursera.org/learn/language-processing Natural Language Processing (coursera, HSE)]
 +
 +
[[Категория:Учебные курсы]]

Версия 11:50, 13 сентября 2021

В курсе рассматриваются основные задачи и математические методы обработки естественного языка.

Курс читается:

От студентов требуются знание курса машинного обучения, основ глубинного обучения, а также языка программирования Python.

Содержание

Объявления

Нет

Контакты

  • В этом семестре занятия будут проводиться онлайн в zoom
  • По всем конструктивным вопросам пишите в telegram-чат
  • Репозиторий со всеми материалами: ссылка
  • Видеозаписи лекций 2020 года: ссылка
  • Короткая ссылка на страницу курса: ссылка
  • Родственный курс на ВМК МГУ: ссылка

Правила сдачи курса

Правила выставления итоговой оценки

В рамках курса предполагается четыре практических задания и экзамен. Практические задания сдаются в систему anytask (инвайт у преподавателя). Срок выполнения каждого задания — 2 недели. За каждое задание можно получить до 10-ти баллов. За каждый день просрочки назначается штраф 1 балл. Основной язык выполнения заданий — Python 3.

Студенты, набравшие за практические задания больше 40 баллов, получают автоматом максимальную оценку. Для остальных итоговая оценка по 10-ти балльной шкале вычисляется по следующей формуле:

TBA

Если после сдачи экзамена студенту не хватает баллов на положительную оценку, он отправляется на "пересдачу". Студент должен досдать домашние задания, которые он не сдавал в течение семестра, чтобы набрать баллы для получения минимальной удовлетворительной оценки. Домашние задания проверяются без учёта штрафа.

Программа курса

Дата Тема Материалы Д/З
1 09.09 Организация курса, правила игры.

Введение в обработку текстов (Natural Language Processing).

Предобработка, выделение признаков и классификация .

2 16.09 Векторные представления слов
3 23.09 Библиотека pytorch.

Pytorch при работе с представлениями слов.

4 30.09 Задача разметки последовательностей (tagging). Примеры задач.

Модель Linear-CRF, её упрощения и обобщения.

5 07.10

Модели рекуррентных нейронных сетей: RNN, LSTM.

Применение LSTM для разметки последовательности.

6 14.10

Pytorch для работы с последовательностями.

7 21.10 Машинный перевод. Подход Sequence-to-sequence.

Механизм внимания в подходе sequence-to-sequence.

Архитектура transformer.

8 28.10 Задача языкового моделирования.

Статистические и нейросетевые языковые модели.

Задача генерации естественного языка.

9 11.11 Контекстуальные векторные представления слов.

Transfer learning в NLP.

Модель BERT и её модификации.

10 18.11 Задача классификации текстов.

Дизайн индустриальной ML-системы.

11 25.11 Тематическое моделирование и его приложения.
12 02.12

Различные приложения DL в NLP.

13 09.12 TBA
14 16.12 TBA

Страницы прошлых лет

Дополнительные материалы

Литература

Другие курсы по NLP

Личные инструменты