Участник:Ruzik/Песочница
Материал из MachineLearning.
Строка 19: | Строка 19: | ||
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента): | Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента): | ||
::<tex>w \, {:=} \, w \, - \, \eta \nabla Q(w)</tex>, | ::<tex>w \, {:=} \, w \, - \, \eta \nabla Q(w)</tex>, | ||
- | <tex>\eta</tex> - | + | где <tex>\eta</tex> - положительный параметр, называемый ''темп обучения (learning rate)''. |
Версия 10:53, 3 января 2010
Метод стохастического градиента (Stochastic Gradient)
Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении. Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов w в линейном классификаторе (ссылка). Пусть - целевая зависимость, известная только на объектах обучающей выборки: .
Найдём алгоритм , аппроксимирующий зависимость . Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу: , где - заданная функция потерь.
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор w изменяется в направлении наибольшего убывания функционала Q (то есть в направлении антиградиента):
- ,
где - положительный параметр, называемый темп обучения (learning rate).