Участник:Василий Ломакин/Коэффициент корреляции Кенделла
Материал из MachineLearning.
Василий Ломакин (Обсуждение | вклад)
(Новая: {{TOCright}} Корреляцию Кенделла также называют мерой взаимной неупорядоченности или рассогласования. ==О...)
К следующему изменению →
Версия 16:26, 3 января 2010
|
Корреляцию Кенделла также называют мерой взаимной неупорядоченности или рассогласования.
Определение
Заданы две выборки .
Коэффициент корреляции Кенделла, равен
- ,
где [логическое выражение]=1, если логическое выражение верно, иначе, 0, например,
Коэффициент принимает значения от -1 до 1. Равенство указывает на строгую линейную корреляцию.
Статистическая проверка наличия корреляции
Гипотеза : Выборки и не коррелируют.
Статистика критерия:
где .
При статистику критерия можно приблизить нормальным распределением с параметрами (0,1):
Критерий (при уровне значимости ):
- против альтернативы : наличие корреляции
- если , где — -квантиль стандартного нормального распределения.
Связь коэффициента корреляции Кенделла с коэффициентом корреляции Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла может быть использован для оценки коэффициента корреляции Пирсона по формуле
Связь коэффициента корреляции Кенделла с коэффициентом корреляциии Спирмена
Выборкам и соответствуют последовательности рангов:
- , где — ранг -го объекта в вариационном ряду выборки ;
- , где — ранг -го объекта в вариационном ряду выборки .
Проведем операцию упорядочевания рангов.
Расположим ряд значений в порядке возрастания величины: . Тогда последовательность рангов упорядоченной выборки будет представлять собой последовательность натуральных чисел . Значения , соответствующие значениям , образуют в этом случае некоторую последовательность рангов .
- ( — операция упорядочевания рангов).
Коэффициент корреляции Кенделла и коэффициент корреляции Спирмена выражаются через ранги следующим образом:
Коэффициент корреляции Спирмена учитывает насколько сильна неупорядоченность.
Утверждение. Если выборки и не коррелируют (выполняется гипотеза ), то коэффициент корреляции между величинами и можно вычислить по формуле:
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003
См. также
Ссылки
- Коэффициент корреляции(Википедия)
- Корреляционный анализ (Википедия)