Участник:Василий Ломакин/Коэффициент корреляции Кенделла
Материал из MachineLearning.
Строка 14: | Строка 14: | ||
Заданы две выборки <tex>x = (x_1,\ldots,x_n),\; y = (y_1,\ldots,y_n)</tex>. | Заданы две выборки <tex>x = (x_1,\ldots,x_n),\; y = (y_1,\ldots,y_n)</tex>. | ||
- | '''Вычисление корреляции Кенделла''' | + | '''Вычисление корреляции Кенделла:''' |
Коэффициент корреляции Кенделла вычисляется по формуле: | Коэффициент корреляции Кенделла вычисляется по формуле: | ||
Строка 21: | Строка 21: | ||
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную. | Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную. | ||
- | '''Обоснование критерия Кенделла''' | + | '''Обоснование критерия Кенделла:''' |
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть: | Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть: | ||
Строка 53: | Строка 53: | ||
==Примеры== | ==Примеры== | ||
- | Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде <tex>(\tau,\ \rho)</tex>, где <tex>\tau</tex> - корреляция Кенделла, <tex>\rho</tex> - Спирмена. Заметно, что в большинстве случаев \left \rho \right\ >\ \left \tau \right. Объяснение этого эффекта приводится [[Коэффициент_корреляции_Кенделла#Связь коэффициентов корреляции Кенделла и Спирмена|ниже]]. | + | Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде <tex>(\tau,\ \rho)</tex>, где <tex>\tau</tex> - корреляция Кенделла, <tex>\rho</tex> - Спирмена. Заметно, что в большинстве случаев <tex>\left| \rho \right|\ >\ \left| \tau \right|</tex>. Объяснение этого эффекта приводится [[Коэффициент_корреляции_Кенделла#Связь коэффициентов корреляции Кенделла и Спирмена|ниже]]. |
===Направление линейной зависимости=== | ===Направление линейной зависимости=== | ||
Строка 102: | Строка 102: | ||
::<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];</tex> | ::<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];</tex> | ||
- | '''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то | + | Заметно, что в случае <tex>\rho</tex> инверсиям придаются дополнительные веса <tex>(j-i)</tex>, таким образом <tex>\rho</tex> сильнее реагирует на несогласие ранжировок, чем <tex>\tau</tex>. Этот эффект проявляется в приведённых выше примерах: в большинстве из них <tex>\left| \rho \right|\ >\ \left| \tau \right|</tex>. |
+ | |||
+ | '''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то величины <tex>\rho</tex> и <tex>\tau</tex> сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле: | ||
::<tex>corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}</tex>. | ::<tex>corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}</tex>. | ||
Версия 13:02, 4 января 2010
|
TODO:
- Орфография, пунктуация
- Рисунки
Коэффициент корреляции Кенделла — мера линейной связи между случайными величинами. Коэффициент является ранговым, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Описание
Заданы две выборки .
Вычисление корреляции Кенделла:
Коэффициент корреляции Кенделла вычисляется по формуле:
- , где — количество инверсий, образованных величинами , расположенными в порядке возрастания соответствующих .
Коэффициент принимает значения из отрезка . Равенство указывает на строгую прямую линейную зависимость, на обратную.
Обоснование критерия Кенделла:
Будем говорить, что пары и согласованы, если и или и , то есть . Пусть - число согласованных пар, - число несогласованных пар. Тогда, в предположении, что среди и среди нет совпадений, превышение согласованности над несогласованностью есть:
- .
Для измерения степени согласия Кенделл предложил следующий коэффициент:
- .
Таким образом, коэффициент (линейно связанный с ) можно считать мерой неупорядоченности второй последовательности относительно первой.[3]
Статистическая проверка наличия корреляции
Нулевая гипотеза : Выборки и не коррелируют.
Статистика критерия:
Асимптотический критерий (при уровне значимости ):
Рассмотрим центрированную и нормированную статистику Кенделла:
- , где .
Нулевая гипотеза отвергается (против альтернативы - наличие корреляции), если:
- , где есть -квантиль стандартного нормального распределения.
Аппроксимация удовлетворительно работает начиная с .[4]
Примеры
Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде , где - корреляция Кенделла, - Спирмена. Заметно, что в большинстве случаев . Объяснение этого эффекта приводится ниже.
Направление линейной зависимости
Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными.
Наклон линейного тренда
Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости.
Нелинейная зависимость
Линейная и нелинейная зависимость
На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом.
По мере смены линейной зависимости нелинейной коэффициенты корреляции падают.
Связь коэффициентов корреляции Кенделла и Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла может быть использован для оценки коэффициента корреляции Пирсона по формуле:
- .[5]
Связь коэффициентов корреляции Кенделла и Спирмена
Выборкам и соответствуют последовательности рангов:
- , где — ранг -го объекта в вариационном ряду выборки ;
- , где — ранг -го объекта в вариационном ряду выборки .
Проведем операцию упорядочивания рангов.
Расположим ряд значений в порядке возрастания величины: . Тогда последовательность рангов упорядоченной выборки будет представлять собой последовательность натуральных чисел . Значения , соответствующие значениям , образуют в этом случае некоторую последовательность рангов :
- .
Коэффициент корреляции Кенделла и коэффициент корреляции Спирмена выражаются через ранги следующим образом:
Заметно, что в случае инверсиям придаются дополнительные веса , таким образом сильнее реагирует на несогласие ранжировок, чем . Этот эффект проявляется в приведённых выше примерах: в большинстве из них .
Утверждение.[6] Если выборки и не коррелируют (выполняется гипотеза ), то величины и сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле:
- .
История
Критерий был введён в 1938 году известным британским статистиком Морисом Джорджем Кенделлом.
Примечания
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 223 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 345 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 624-626 с.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346 с.
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с.
Ссылки
- Ранговая корреляция
- Коэффициент корреляции Спирмена — другой способ расчёта ранговой корреляции.
- Коэффициент корреляции Пирсона
- Коэффициент корреляции — статья в русскоязычной Википедии.
- Kendall tau rank correlation coefficient — статья в англоязычной Википедии.