Участник:Василий Ломакин/Коэффициент корреляции Спирмена

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 28: Строка 28:
'''Обоснование критерия Спирмена:'''
'''Обоснование критерия Спирмена:'''
-
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть:
+
Статистикой критерия Спирмена служит выборочный коэффициент корреляции <tex>\rho</tex> ранговых наборов <tex>(R_1 \ldots R_n)</tex> и <tex>(S_1 \ldots S_n)</tex>. Он определяется следующей формулой:
-
:<tex>T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i)</tex>.
+
:<tex>\rho = \sum_{i=1}^n(R_i-\bar R)(S_i-\bar S) \left/ \left[ \sum_{i=1}^n(R_i-\bar R)^2 \sum_{i=1}^n(S_i-\bar S)^2 \right] ^ {1/2}</tex>.
-
Для измерения степени согласия Кенделл предложил следующий коэффициент:
+
В этой формуле <tex>\bar R = \bar S = \frac1n\sum_{i=1}^n i = \frac{n+1}{2}</tex>.
-
:<tex>\tau = \frac{T}{max{T}} = \frac{2T}{n(n-1)} = \frac{2(S-R)}{n(n-1)} = 1 - \frac{4}{n(n-1)}R</tex>.
+
Воспользовавшись тем, что <tex>\sum_{i=1}^ni^2 = \frac{n(n+1)(2n+1}{6}</tex>, получим:
 +
:<tex>\sum_{i=1}^n(R_i-\bar R)^2 = \sum_{i=1}^n(S_i-\bar S)^2 = \sum_{i=1}^n\left( i - \frac{n+1}{2} \right)^2 = \frac{n(n-1)(n+1)}{12}</tex>.
-
Таким образом, коэффициент <tex>\tau</tex> (линейно связанный с <tex>R</tex>) можно считать ''мерой неупорядоченности'' второй последовательности относительно первой.<ref>Лагутин М. Б. Наглядная математическая статистика. — 345 с.</ref>
+
Переставив пары <tex>(R_i,\ S_i)</tex> в порядке возрастания первой компоненты, получим набор <tex>(1,\ T_1) \ldots (n,\ T_n)</tex>. Тогда коэффициент корреляции Спирмена можно переписать в виде:
 +
:<tex>\rho = \frac{12}{n(n-1)(n+1)}\sum_{i=1}^n \left( i - \frac{n+1}{2} \right) \left( T_i - \frac{n+1}{2} \right)</tex>.
 +
Таким образом, <tex>\rho</tex> - линейная функция от рангов <tex>T_i</tex>. Правую часть равенства можно представить в следующем виде:
-
Обозначим через <tex>L_x</tex> — число [[вариационный ряд|связок]] в выборке <tex>x</tex>;
+
:<tex>\rho = 1 - \frac{6}{n(n-1)(n+1)}\sum_{i=1}^n(i - T_i)^2 = 1 - \frac{6}{n(n-1)(n+1)}\sum_{i=1}^n \left( R_i - S_i \right)^2,</tex> который наиболее удобен для вычислений.
-
: <tex>T_{x_l}</tex> — число объектов в <tex>l</tex>-ой связке, <tex>l=1,\ldots,L_x</tex>;
+
-
: <tex>L_y</tex> — число [[вариационный ряд|связок]] в выборке <tex>y</tex>;
+
-
: <tex>T_{y_l}</tex> — число объектов в <tex>l</tex>-ой связке, <tex>l=1,\ldots,L_y</tex>;
+
-
 
+
-
Выборкам <tex>x</tex> и <tex>y</tex> соответствуют последовательности рангов:
+
-
::<tex>R_x=(R_{x_1},\ldots,R_{x_n})</tex>, где <tex>R_{x_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>x</tex>;
+
-
::<tex>R_y=(R_{y_1},\ldots,R_{y_n})</tex>, где <tex>R_{y_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>y</tex>.
+
-
 
+
-
Коэффициент корреляции Спирмена вычисляется по формуле
+
-
::<tex>\rho=\frac{\sum_{i=1}^n{(R_{x_i}-\frac{n+1}{2})(R_{y_i}-\frac{n+1}{2})}}{\frac{1}{12}(n^3-n)-\Delta},</tex>
+
-
где <tex>\Delta=\frac{1}{2}\sum_{l=1}^{L_{x}}{T_{x_l}(T_{x_l}^2-1)+\frac{1}{2}\sum_{l=1}^{L_y}{T_{y_l}(T_{y_l}^2-1)}}</tex>.
+
-
 
+
-
Коэффициент корреляции Спирмена <tex>\rho</tex> изменяется от -1 до 1. Равенство <tex>\rho=1</tex> указывает на строгую линейную корреляцию, <tex>\rho=0</tex> указывает на отсутствие корреляции.
+
==Статистическая проверка наличия корреляции==
==Статистическая проверка наличия корреляции==
Строка 117: Строка 107:
По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают.
По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают.
-
 
==Связь коэффициентов корреляции Спирмена и [[коэффициент корреляции Пирсона|Пирсона]]==
==Связь коэффициентов корреляции Спирмена и [[коэффициент корреляции Пирсона|Пирсона]]==
Строка 149: Строка 138:
==Примечания==
==Примечания==
-
<\references>
+
<references/>
== Литература ==
== Литература ==

Версия 17:45, 4 января 2010

Содержание

TODO:

  1. Орфография, пунктуация
  2. Рисунки
  3. Определение корреляции

Коэффициент корреляции Спирмена (Spearman rank correlation coefficient) — мера линейной связи между случайными величинами. Корреляция Спирмена является ранговой, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Определение

Заданы две выборки x = (x_1,\ldots,x_n),\;\; y = (y_1,\ldots,y_n).

Вычисление корреляции Спирмена:

Коэффициент корреляции Спирмена вычисляется по формуле:

\rho=1-\frac{6}{n(n-1)(n+1)}\sum_{i=1}^n(R_i-S_i)^2,[1] где R_i - ранг наблюдения x_i в ряду x, S_i - ранг наблюдения y_i в ряду y.

Коэффициент \rho принимает значения из отрезка [-1;\;1]. Равенство \rho=1 указывает на строгую прямую линейную зависимость, \rho=-1 на обратную.

Случай совпадающих наблюдений:

При наличии связок коэффициент корреляции Спирмена следует вычислять следующим образом:

\rho = \frac{\sum_{i=1}^n{(R_i-(n+1)/2)(S_i-(n+1)/2)}}{n(n-1)(n+1)-\Delta},[2]
где \Delta=\frac{1}{2}\sum_{l=1}^q{u_i^x((u_i^x)^2-1)+\frac{1}{2}\sum_{i=1}^{f}{u_i^y((u_i^y)^2-1)}}.
Здесь q и f — количество связок в выборках x и y, u^x_1, \ldots, u^x_q, u^y_1, \ldots, u^y_f — их размеры. Для элементов связок вычисляется средний ранг.

Обоснование критерия Спирмена:

Статистикой критерия Спирмена служит выборочный коэффициент корреляции \rho ранговых наборов (R_1 \ldots R_n) и (S_1 \ldots S_n). Он определяется следующей формулой:

\rho = \sum_{i=1}^n(R_i-\bar R)(S_i-\bar S) \left/ \left[ \sum_{i=1}^n(R_i-\bar R)^2 \sum_{i=1}^n(S_i-\bar S)^2 \right] ^ {1/2}.

В этой формуле \bar R = \bar S = \frac1n\sum_{i=1}^n i = \frac{n+1}{2}.

Воспользовавшись тем, что \sum_{i=1}^ni^2 = \frac{n(n+1)(2n+1}{6}, получим:

\sum_{i=1}^n(R_i-\bar R)^2 = \sum_{i=1}^n(S_i-\bar S)^2 = \sum_{i=1}^n\left( i - \frac{n+1}{2} \right)^2 = \frac{n(n-1)(n+1)}{12}.

Переставив пары (R_i,\ S_i) в порядке возрастания первой компоненты, получим набор (1,\ T_1) \ldots (n,\ T_n). Тогда коэффициент корреляции Спирмена можно переписать в виде:

\rho = \frac{12}{n(n-1)(n+1)}\sum_{i=1}^n \left( i - \frac{n+1}{2} \right) \left( T_i - \frac{n+1}{2} \right).

Таким образом, \rho - линейная функция от рангов T_i. Правую часть равенства можно представить в следующем виде:

\rho = 1 - \frac{6}{n(n-1)(n+1)}\sum_{i=1}^n(i - T_i)^2 = 1 - \frac{6}{n(n-1)(n+1)}\sum_{i=1}^n \left( R_i - S_i \right)^2, который наиболее удобен для вычислений.

Статистическая проверка наличия корреляции

Нулевая гипотеза H_0: Выборки x и y не коррелируют (\rho = 0).

Статистика критерия: \rho.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \rho\ >\ 0:

если \rho больше табличного значения критерия Спирмена p[3] с уровнем значимости \alpha/2, то нулевая гипотеза отвергается.

Асимптотический критерий:

Критическая область критерия Спирмена.
Критическая область критерия Спирмена.

Рассмотрим центрированную и нормированную статистику Спирмена:

\tilde{\rho} = \frac{\rho}{\sqrt{D_{\rho}}},, где D_{\rho}=\frac{1}{n-1}.

Нулевая гипотеза отвергается (против альтернативы H_2\left| \rho \right|\ >\ 0), если:

 \left|\tilde{\rho}\right| \ge \Phi_{1-\alpha/2} ,[4][5] где \Phi_{1-\alpha} есть (1-\alpha)-квантиль стандартного нормального распределения.

Аппроксимация удовлетворительно работает, начиная с n\geq 50.[6]

Поправка:[7][8]

В 1978 году Р. Иман и У. Коновер предложили следующую поправку, значительно повышающую точность аппроксимации. Она использует линейную комбинацию нормальной и стьюдентовской квантилей. Положим:

\tilde{\rho} ^{*} = \frac12 \tilde{\rho} \left[ \sqrt{n-1} + \sqrt{\frac{n-2}{1 - (\tilde{\rho})^2}} \right].

Гипотеза H_0 отвергается в пользу альтернативы H_1\ (\rho\ >\ 0), если \tilde{\rho} ^{*} \ge (x_{1-\alpha}+y_{1-\alpha})/2, где x_{1-\alpha},\; y_{1-\alpha} обозначают соответственно квантили уровня (1-\alpha) стандартного нормального распределения и распределения Стьюдента с n-2 степенями свободы.

Примеры

Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде (\tau,\ \rho), где \tau - корреляция Кенделла, \rho - Спирмена. Заметно, что в большинстве случаев \left| \rho \right|\ >\ \left| \tau \right|. Объяснение этого эффекта приводится ниже.

Направление линейной зависимости

Корреляции Кенделла и Спирмена. Нормальные сгущения.
Корреляции Кенделла и Спирмена. Нормальные сгущения.

Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными.

Наклон линейного тренда

Корреляции Кенделла и Спирмена. Вращающаяся полоса.
Корреляции Кенделла и Спирмена. Вращающаяся полоса.

Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости.

Нелинейная зависимость

Корреляции Кенделла и Спирмена. Нелинейная зависимость.
Корреляции Кенделла и Спирмена. Нелинейная зависимость.

Корреляции Кенделла и Спирмена не отражают меры нелинейной зависимости между переменными.

Линейная и нелинейная зависимости

На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом.

Корреляции Кенделла и Спирмена. Перекрещенные полосы.
Корреляции Кенделла и Спирмена. Перекрещенные полосы.

Корреляции Кенделла и Спирмена. Расширяющаяся полоса.
Корреляции Кенделла и Спирмена. Расширяющаяся полоса.

Корреляции Кенделла и Спирмена. Синусоида с переменной амплитудой.
Корреляции Кенделла и Спирмена. Синусоида с переменной амплитудой.

По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают.

Связь коэффициентов корреляции Спирмена и Пирсона

В случае выборок из нормального распределения коэффициент корреляции Спирмена \rho может быть использован для оценки коэффициента корреляции Пирсона r по формуле:

r=2sin{\frac{\pi}{6}\rho}.[9]

Связь коэффициентов корреляции Кенделла и Спирмена

Выборкам x и y соответствуют последовательности рангов:

R_x=(R_{x_1},\ldots,R_{x_n}), где R_{x_i} — ранг i-го объекта в вариационном ряду выборки x;
R_y=(R_{y_1},\ldots,R_{y_n}), где R_{y_i} — ранг i-го объекта в вариационном ряду выборки y.

Проведем операцию упорядочивания рангов.

Расположим ряд значений x_i в порядке возрастания величины: x_1\leq x_2\leq\cdots\leq x_n. Тогда последовательность рангов упорядоченной выборки x будет представлять собой последовательность натуральных чисел 1,2,\cdots,n. Значения y, соответствующие значениям x, образуют в этом случае некоторую последовательность рангов T=(T_1,\cdots,T_n):

(R_{x_i},\;R_{y_i})\rightarrow^{sort} (i,\;T_i),\; i=1,\cdots,n.

Коэффициент корреляции Кенделла \tau и коэффициент корреляции Спирмена \rho выражаются через ранги T_i,\; i=1,\cdots,n следующим образом:

\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};
\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];

Заметно, что в случае \rho инверсиям придаются дополнительные веса (j-i), таким образом \rho сильнее реагирует на несогласие ранжировок, чем \tau. Этот эффект проявляется в приведённых выше примерах: в большинстве из них \left| \rho \right|\ >\ \left| \tau \right|.

Утверждение.[10] Если выборки x и y не коррелируют (выполняется гипотеза H_0), то величины \rho и \tau сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле:

corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}.

История

Критерий был предложен британским психологом Чарльзом Эдвардом Спирменом в 1904 году.

Примечания

  1. Лагутин М. Б. Наглядная математическая статистика. — 343 с.
  2. Лапач С. Н. Статистика в науке и бизнесе. — 182 с.
  3. Лагутин М. Б. Наглядная математическая статистика. — 455 с.
  4. Кобзарь А. И. Прикладная математическая статистика. — 627 с.
  5. Лагутин М. Б. Наглядная математическая статистика. — 344 с.
  6. Лагутин М. Б. Наглядная математическая статистика. — 344 с.
  7. Лагутин М. Б. Наглядная математическая статистика. — 345 с.
  8. Кобзарь А. И. Прикладная математическая статистика. — 627 с.
  9. Кобзарь А. И. Прикладная математическая статистика. — 627 с.
  10. Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 626-628 с.
  2. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 343-345 с.
  3. Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 182-184 с.

Ссылки

Личные инструменты