МЛР
Материал из MachineLearning.
(→Сингулярное разложение) |
|||
Строка 1: | Строка 1: | ||
{{Задание|Касперский Иван|Константин Воронцов|{{дата|6|1|2009}}, а сейчас {{дата}}}} | {{Задание|Касперский Иван|Константин Воронцов|{{дата|6|1|2009}}, а сейчас {{дата}}}} | ||
+ | Многомерная линейная регрессия — это [[регрессия]] в n-мерном пространстве. | ||
== Многомерная линейная регрессия == | == Многомерная линейная регрессия == | ||
Имеется множество объектов <tex>X = \mathbb{R} ^n</tex> и множество ответов <tex>Y = \mathbb{R}</tex>. Также имеется набор <tex>n</tex> вещественнозначных признаков <tex>f_j(x), \ j=1, \ \ldots , \ n</tex>. Введём матричные обозначения: матрицу информации <tex>F</tex>, целевой вектор <tex>y</tex> и вектор параметров <tex>\alpha</tex>: | Имеется множество объектов <tex>X = \mathbb{R} ^n</tex> и множество ответов <tex>Y = \mathbb{R}</tex>. Также имеется набор <tex>n</tex> вещественнозначных признаков <tex>f_j(x), \ j=1, \ \ldots , \ n</tex>. Введём матричные обозначения: матрицу информации <tex>F</tex>, целевой вектор <tex>y</tex> и вектор параметров <tex>\alpha</tex>: | ||
Строка 21: | Строка 22: | ||
{{бледно|<small>как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!</small>}} | {{бледно|<small>как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!</small>}} | ||
- | Теперь рассмотрим [[ | + | Теперь рассмотрим [[сингулярное разложение]] матрицы F:<br /> |
:<tex>F\ =\ VDU^T</tex>. | :<tex>F\ =\ VDU^T</tex>. | ||
В таких обозначениях:<br /> | В таких обозначениях:<br /> | ||
:<tex>F^+\ =\ (F^TF)^{-1}F^T\ =\ (UDV^TVDU^T)^{-1}UDV^T\ =\ (UDDU^T)^{-1}UDV^T\ =\ U^{-T}D^{-2}U^{-1}UDV^T\ =\ U^{-T}D^{-2}DV^T</tex>, а так как <tex>U^{-1}\ =\ U^T</tex>, то <tex>F^+\ =\ UD^{-1}V^T\ =\ \sum_{j=1}^{n}{ \frac{1}{\sqrt{\lambda _j}}u_j v_j^T }</tex> в силу диагональности матрицы ''D''. | :<tex>F^+\ =\ (F^TF)^{-1}F^T\ =\ (UDV^TVDU^T)^{-1}UDV^T\ =\ (UDDU^T)^{-1}UDV^T\ =\ U^{-T}D^{-2}U^{-1}UDV^T\ =\ U^{-T}D^{-2}DV^T</tex>, а так как <tex>U^{-1}\ =\ U^T</tex>, то <tex>F^+\ =\ UD^{-1}V^T\ =\ \sum_{j=1}^{n}{ \frac{1}{\sqrt{\lambda _j}}u_j v_j^T }</tex> в силу диагональности матрицы ''D''. | ||
- | + | А решение метода наименьших квадратов запишется в следующем виде:<br /> | |
- | + | :<tex>\alpha ^*\ =\ F^+y\ =\ \sum_{j=1}^{n} \frac1{\sqrt{\alpha _j}} u_j(v_j^T,\ y);</tex><br /> | |
- | + | А так как <tex>\parallel \alpha \parallel^2 \ =\ \alpha ^T \alpha</tex>, то <br /> | |
- | + | :<tex>\parallel \alpha ^*\parallel^2 \ =\ \parallel UD^{-1}V^Ty \parallel^2 \ =\ y^TVD^{-T}U^TUD^{-1}V^Ty\ =\ y^TVD^{-2}V^Ty\ =\ \parallel D^{-1}V^Ty \parallel^2\ =\ \sum_{j=1}^{n} \frac1{\alpha _j} (v_j^T,\ y)^2.</tex> | |
- | + | ||
- | + | ||
<references/> | <references/> |
Версия 09:31, 5 января 2010
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Многомерная линейная регрессия — это регрессия в n-мерном пространстве.
Многомерная линейная регрессия
Имеется множество объектов и множество ответов
. Также имеется набор
вещественнозначных признаков
. Введём матричные обозначения: матрицу информации
, целевой вектор
и вектор параметров
:
Алгоритм:
.
Оценим качество его работы на выборке методом наименьших квадратов:
, или, в матричных обозначениях,
.
Найдём минимум по α:
.
Если , то можно обращать матрицу
, где введено обозначение
.
В таком случае функционал качества записывается в более удобной форме:
, где
— проекционная матрица:
— вектор, являющийся проекцией
на
.
как нарисовать значок проекционной матрицы, чтобы его можно было отличить от того, на что матрица умножается?!
Теперь рассмотрим сингулярное разложение матрицы F:
.
В таких обозначениях:
, а так как
, то
в силу диагональности матрицы D.
А решение метода наименьших квадратов запишется в следующем виде:
А так как , то