Участник:Anton/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 17: Строка 17:
=== Критерий Фишера для проверки гипотезы о равенстве всех средних ===
=== Критерий Фишера для проверки гипотезы о равенстве всех средних ===
 +
Пусть даны <tex>k</tex> выборок объемом <tex>n_i</tex> каждая с общим число элементов <tex>n</tex>, т.е.
 +
<tex>\sum_{i=1}^k n_i = n </tex>
=== Критерий Стьюдента для проверки гипотезы о равенстве соседних выборок ===
=== Критерий Стьюдента для проверки гипотезы о равенстве соседних выборок ===

Версия 17:11, 5 января 2010

Метод LSD = Метод группирования выборок с наименее значимой разницей = Least Significant Difference method.

Метод LSD позволяет проверять равенство средних значений нескольких выборок и выделять группы выборок с одинаковыми средними значениями. Метод изобретен Фишером в 1935 году [1] и является первым методом множественных сравнений. Также известен как безопасный t-тест (protected t-test method).

Содержание

Описание метода

Обозначения. Пусть имеется k выборок x^{n_1}_1, . . . , x^{n_k}_k объемом n_i (i=1,...,k ) каждая. Через \mu_i обозначим математические ожидания распределений, из которых получены выборки.

Предположим, что

  1. Выборки x^{n_1}_1, . . . , x^{n_k}_k являются нормально-распределенными.
  2. Выборки x^{n_1}_1, . . . , x^{n_k}_k обладают одинаковыми дисперсиями.

Метод состоит из двух этапов:

  1. Сначала при помощи критерия Фишера проверяется гипотеза о равенстве всех \mu_i. Если гипотеза принимается, то метод останавливается, иначе переход к шагу 2.
  2. Выборки упорядочиваются до возрастанию выборочных средних. После этого поэтапно проверяются гипотезы равенства средних соседних выборок помощи критерия Стьюдента. В качестве оценки дисперсии используется внутрегрупповое среднее. Если гипотеза принимается со соответствующие выборки объединяются в одну группу.

Если выполнять только шаг 2, то получим небезопасный метод LSD (unprotected LSD method). Под небезопасностью понимается неконтролируемое увеличение вероятности ошибок 1-го рода при многократном применении

Критерий Фишера для проверки гипотезы о равенстве всех средних

Пусть даны k выборок объемом n_i каждая с общим число элементов n, т.е.

\sum_{i=1}^k n_i = n

Критерий Стьюдента для проверки гипотезы о равенстве соседних выборок

Пример использования

 X_i - цены на i-ое лекарство в разных аптеках. Вопрос: какие лекарства взаимозаменяемы по цене? Делим лекарства на ценовые коридоры.

Сноски

  1. S. E. Maxwell, H. D. Delaney Designing experiments and analyzing data: a model comparison perspective. 2003. P. 229.

Литература

  1. Закс Л. Статистическое оценивание. — М.: Статистика, 1976. — 600 с.
  2. Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистические методы в медико-биологических исследованиях с использованием Excel. — Киев: Морион, 2001. — 408 с.
  3. Scott E. Maxwell, Harold D. Delaney Designing experiments and analyzing data: a model comparison perspective. — 2003.
  4. Jason C. Hsu Multiple comparisons: theory and methods. — 1996.
  5. Gerald Keller Statistics for Management and Economics: Abbreviated Edition. — 2008.

См. также


Данная статья является непроверенным учебным заданием.
Студент: Участник:Anton
Преподаватель: Участник:Vokov
Срок: 8 января 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты