Робастное оценивание
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
== Введение == | == Введение == | ||
- | + | На протяжении последних десятилетий росло понимание того факта, что некоторые наиболее распространенные статистические процедуры (в том числе те, которые оптимальны в предположении о нормальности распределения) весьма чувствительны к довольно малым отклонениям от предположений. Вот почему теперь появились иные процедуры - "робастные" (от англ. ''robust'' - крепкий,здоровый, дюжий.) | |
== Вычисление робастных оценок == | == Вычисление робастных оценок == | ||
Версия 19:23, 5 января 2010
Содержание |
Введение
На протяжении последних десятилетий росло понимание того факта, что некоторые наиболее распространенные статистические процедуры (в том числе те, которые оптимальны в предположении о нормальности распределения) весьма чувствительны к довольно малым отклонениям от предположений. Вот почему теперь появились иные процедуры - "робастные" (от англ. robust - крепкий,здоровый, дюжий.)
Вычисление робастных оценок
Рассмотрим пример. Для оценки неизвестных параметров используется наблюдений , причем они связаны между собой следующим неравенством , где элементы матрицы суть известные коэффициенты, а - вектор независимых случайных величин,имеющих (приблизительное)одинаковые функции распределения.
Тогда решение сводится к следующему:
Если матрица - матрица полного ранга , то , а оценки будут высиляться по следующей формуле , где , далее - матрица подгонки.
Допустим, что мы получили значения и остатки .
Пусть - некоторая оценка стандартной ошибки наблюдений (или стандартной ошибки остатков )
Метрически винзоризуем наблюдения , заменяя их псевдонаблюдениями :
Константа регулирует степень робастности, её значения хорошо выбирать из промежутка от 1 до 2, например, чаще всего .
Затем по псевдонаблюдениям вычисляются новые значения подгонки (и новые ). Действия повторяются до достижения сходимости.
Если все наблюдения совершенно точны, то классическая оценка дисперсии отдельного наблюдения имеет вид , и стандартную ошибку остатка можно в этом случае оценивать величиной , где есть -й диагональный элемент матрицы .
При использовании вместо остатков модифицированных остатков , как нетрудно видеть, получается заниженная оценка масштаба. Появившееся смещение можно ликвидировать, полагая (в первом приближении)
,
где - число наблюдений без числа параметров, - число неизменных наблюдений ().
Очевидно, что эта процедура сводит на нет влияние выделяющихся наблюдений.
Литература
- Хьюбер П. Робастность в статистике. — М.: Мир, 1984.
Ссылки
- Робастность в статистике.
- Робастность статистических процедур.
- Публикации по робастным методам оценивания параметров и проверке статистических гипотез на сайте профессора НГТУ Лемешко Б.Ю..
- Robust statistics.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |