Прогнозирование объемов продаж групп товаров (отчет)
Материал из MachineLearning.
(Новая: '''Введение в проект''' == Описание проекта == === Цель проекта === Цель проекта — прогнозирование еженеде...) |
(→Постановка задачи) |
||
Строка 29: | Строка 29: | ||
== Постановка задачи == | == Постановка задачи == | ||
+ | Заданы временные ряды продаж товаров <tex>x_{ij}(t) \in R</tex> — продажи <tex>i</tex>-ого товара в | ||
+ | <tex>j</tex>-ом магазине за день <tex>t</tex> (<tex>i \in I</tex>, <tex>I</tex> — множество товаров; | ||
+ | <tex>j \in J</tex>, <tex>J</tex> — множество магазинов; <tex>t \in N</tex> — натуральное число), | ||
+ | причем значения продаж известны при | ||
+ | <tex>t_0 \leq t \leq t_1</tex>. Также задан товарный классификатор, исходя из которого товары | ||
+ | разбиваются на группы, образующие иерархическую стуктуру (например, какой-то товар может | ||
+ | входить в группу «ЖК-телевизоры 15"», которая входит в | ||
+ | «ЖК-телевизоры 10" - 17"» и далее в «ЖК-телевизоры», «Телевизоры» и «Бытовую технику»). | ||
+ | Требуется для всех товаров и всех магазинов спрогнозировать продажи за неделю, следующую | ||
+ | после <tex>t_1</tex>, то есть значение величины | ||
+ | |||
+ | <center> | ||
+ | <tex>y_{ij} = \sum_{t=t_1+1}^{t_1+7}x_{ij}(t).</tex> | ||
+ | </center> | ||
+ | |||
+ | Для оценки качества прогнозов будем использовать скользящий контроль, | ||
+ | помещая в обучающую выборку значения <tex>x_{ij}(t)</tex> при <tex>t \in [t_0, t_{max}]</tex>, | ||
+ | <tex>t_{max} < t_1</tex>. Как функционал качества будем использовать | ||
+ | |||
+ | <center> | ||
+ | <tex>Q_{m}(Y, \hat{Y}) = \sum_{i, j}|y_{ij}-\hat{y}_{ij}|</tex> | ||
+ | </center> | ||
+ | |||
+ | или | ||
+ | |||
+ | <center> | ||
+ | <tex>Q_{s}(Y, \hat{Y}) = \sum_{i, j}(y_{ij}-\hat{y}_{ij})^2.</tex> | ||
+ | </center> | ||
== Описание алгоритмов == | == Описание алгоритмов == |
Версия 15:49, 6 февраля 2010
Введение в проект
Описание проекта
Цель проекта
Цель проекта — прогнозирование еженедельных покупок товаров. Горизонт прогнозирования — одна неделя.
Обоснование проекта
Полученные результаты могут быть использованы для планирования закупок товаров магазинами.
Описание данных
Дан региональный классификатор магазинов, товарный классификатор, ряды продаж по SKU (stock keeping unit), информация о дефиците товара, список праздничных дней, разметка промо-акций для каждого товара и розничные цены на товары.
Критерии качества
Используется скользящий контроль; критерием качества служит средний модуль отклонения прогноза от реальной величины покупок.
Требования к проекту
Средний модуль отклонения для нашего алгоритма должен быль меньше, чем для скользящего среднего за предыдущий месяц.
Выполнимость проекта
Прогнозирование покупок товаров в празничные дни и во время промо-акций является отдельной задачей и в данном проекте не рассматривается.
Используемые методы
Предполагается, что товары могут быть агрегированы в группы, исходя из их цены и «близости» по товарному классификатору. Затем может быть осуществлен прогноз для получившихся групп товаров и «разбрасывание» результатов прогнозирования по отдельным товарам из групп.
Постановка задачи
Заданы временные ряды продаж товаров — продажи -ого товара в -ом магазине за день (, — множество товаров; , — множество магазинов; — натуральное число), причем значения продаж известны при . Также задан товарный классификатор, исходя из которого товары разбиваются на группы, образующие иерархическую стуктуру (например, какой-то товар может входить в группу «ЖК-телевизоры 15"», которая входит в «ЖК-телевизоры 10" - 17"» и далее в «ЖК-телевизоры», «Телевизоры» и «Бытовую технику»). Требуется для всех товаров и всех магазинов спрогнозировать продажи за неделю, следующую после , то есть значение величины
Для оценки качества прогнозов будем использовать скользящий контроль, помещая в обучающую выборку значения при , . Как функционал качества будем использовать
или
Описание алгоритмов
Обзор литературы
Базовые предположения
Математическое описание
Варианты или модификации
Описание системы
- Ссылка на файл system.docs
- Ссылка на файлы системы
Отчет о вычислительных экспериментах
Визуальный анализ работы алгоритма
Анализ качества работы алгоритма
Анализ зависимости работы алгоритма от параметров
Отчет о полученных результатах
Список литературы
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |