Тупиковые тесты
Материал из MachineLearning.
(Новая: {{Задание|Mordasova|Константин Воронцов|15 февраля 2010}} [[Алгоритмы вычисления оценок|Алгоритм вычисления о...) |
|||
Строка 1: | Строка 1: | ||
{{Задание|Mordasova|Константин Воронцов|15 февраля 2010}} | {{Задание|Mordasova|Константин Воронцов|15 февраля 2010}} | ||
- | [[Алгоритмы вычисления оценок|Алгоритм вычисления оценки]], в котором множество опорных множеств является множеством всех '''тупиковых тестов''', называется тестовым алгоритмом. Первый вариант таких [[АВО]] был предложен [[Журавлёв, Юрий Иванович|Ю.И. Журавлевым]]. АВО совмещают метрические и логические принципы классификации. От метрических алгоритмов АВО наследует принцип оценивания сходства через введение ''множества метрик'' <tex>\rho_s(x, | + | [[Алгоритмы вычисления оценок|Алгоритм вычисления оценки]], в котором множество опорных множеств является множеством всех '''тупиковых тестов''', называется тестовым алгоритмом. Первый вариант таких [[АВО]] был предложен [[Журавлёв, Юрий Иванович|Ю.И. Журавлевым]]. АВО совмещают метрические и логические принципы классификации. От метрических алгоритмов АВО наследует принцип оценивания сходства через введение ''множества метрик'' <tex>\rho_s(x, x')</tex>, а от логических принцип поиска конъюнктивных закономерностей, конъюнкции строятся не над бинарными признаками <tex>\beta(x)</tex>, а над бинарными функциями близости вида <tex>\beta(x, x') = \[\rho_s(x, x') < \varepsilon_s\]</tex>. В этом случае каждой закономерности соответствует не подмножество признаков, а подмножество метрик, называемое ''опорным множеством''. Как правило одного опорного множества недостаточно, поэтому в АВО применяется взвешенное голосование по системе опорных множеств. |
==Описание АВО, основанных на тупиковых тестах== | ==Описание АВО, основанных на тупиковых тестах== | ||
Строка 10: | Строка 10: | ||
В случае АВО, основанных на тупиковых тестах, начальная информация <tex>I_0</tex> задается таблицей:<br /> | В случае АВО, основанных на тупиковых тестах, начальная информация <tex>I_0</tex> задается таблицей:<br /> | ||
- | *<tex>T_{nml}=\parallel a_{ij}\parallel_{m\times n}</tex>; | + | *<tex>T_{nml}=\parallel a_{ij}\parallel_{m\times n}</tex> - таблица признаков объектов в обучающей выборке; |
- | *<tex>I(X_i)=(a_{i1},\ldots,a_{in})</tex>; | + | *<tex>I(X_i)=(a_{i1},\ldots,a_{in})</tex> - описание объекта из обучающей выборки; |
- | *<tex>X_{m_{i-1}+1}, X_{m_{i-1}+2},\ldots,X_{m_i}\in | + | *<tex>X_{m_{i-1}+1}, X_{m_{i-1}+2},\ldots,X_{m_i}\in Y_i, i=1\ldots l, m_0=0, m_l=m</tex> - выражение, определяющее включение объектов в классы; |
Алгоритм распознавания <tex>A(I_0,X)=\alpha(X)</tex>, где <tex>\alpha(X) = \alpha_1(I_0,X),\ldots ,\alpha_l(I_0,X)</tex>.<br /> | Алгоритм распознавания <tex>A(I_0,X)=\alpha(X)</tex>, где <tex>\alpha(X) = \alpha_1(I_0,X),\ldots ,\alpha_l(I_0,X)</tex>.<br /> | ||
- | + | <tex> | |
- | + | ||
\alpha_i(X) = | \alpha_i(X) = | ||
\begin{cases} | \begin{cases} | ||
- | + | 1, & X\in Y_i\\ | |
- | + | 0, & X \notin Y_i \\ | |
- | + | \Delta, & - \text{объект не распознается алгоритмом.} | |
- | \ | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
\end{cases} | \end{cases} | ||
+ | </tex> |
Версия 19:08, 13 февраля 2010
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
Алгоритм вычисления оценки, в котором множество опорных множеств является множеством всех тупиковых тестов, называется тестовым алгоритмом. Первый вариант таких АВО был предложен Ю.И. Журавлевым. АВО совмещают метрические и логические принципы классификации. От метрических алгоритмов АВО наследует принцип оценивания сходства через введение множества метрик , а от логических принцип поиска конъюнктивных закономерностей, конъюнкции строятся не над бинарными признаками , а над бинарными функциями близости вида . В этом случае каждой закономерности соответствует не подмножество признаков, а подмножество метрик, называемое опорным множеством. Как правило одного опорного множества недостаточно, поэтому в АВО применяется взвешенное голосование по системе опорных множеств.
Описание АВО, основанных на тупиковых тестах
Дано: - множество непересекающихся классов объектов.
Первоначальная информация (обучающая) и описание некоторого объекта , .
Объект задается через набор числовых признаков .</br>
Задача распознавания состоит в определении включения заданного объекта в классы .
В случае АВО, основанных на тупиковых тестах, начальная информация задается таблицей:
- - таблица признаков объектов в обучающей выборке;
- - описание объекта из обучающей выборки;
- - выражение, определяющее включение объектов в классы;
Алгоритм распознавания , где .