Порождение нелинейных регрессионных моделей (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: '''Порождение нелинейных регрессионных моделей''' - порождение функций, зависящих от параметров и от од...)
Строка 7: Строка 7:
== Дополнительные предположения ==
== Дополнительные предположения ==
Предполагается, что функции <tex>g^{_{(2)}}_i(w_i,x, y)</tex> корректно работают в случае вызова в виде <tex>g^{_{(2)}}_i(w_i,x)</tex>.
Предполагается, что функции <tex>g^{_{(2)}}_i(w_i,x, y)</tex> корректно работают в случае вызова в виде <tex>g^{_{(2)}}_i(w_i,x)</tex>.
 +
 +
== Интерпретация на языке графов ==
 +
Заметим вначале, что суперпозиция функций <tex>G_i</tex> может быть задана двоичным деревом <tex>T(V,X)</tex>, вершины которого <tex>V_i</tex>∈<tex>G_i</tex>, корень – самая внешняя функция суперпозиции. Под глубиной вершины будем понимать расстояние от неё до корня. Если у вершины один потомок, то соответствующая функция запишется как <tex>g_i(g_j)</tex>, если два – то <tex>g_i(g_j,g_k)</tex>, если ноль – то <tex>g_i(x)</tex> или <tex>g_i(x,x)</tex>.
 +
 +
[[Изображение:Clip_image001.gif‎|300px]]
 +
 +
Так, дереву '''А''' соответствует суперпозиция <tex>2(1(1),2(1,1))</tex>, а дереву '''Б''' – суперпозиция <tex>1(2(1,1))</tex>.<br /> <br />
 +
Возможна и другая постановка алгоритма. Она особенно ценна, если нельзя вызвать <tex>g^{_{(2)}}_i(x,x)</tex> в виде <tex>g^{_{(2)}}_i(x)</tex>. Изменение состоит в том, что листья дерева суперпозиции считаются не функциями, а свободными переменными. В этом случае дереву '''А''' будет соответствовать суперпозиция <tex>2(1(x), 2(x,x))</tex> дереву '''Б''' – суперпозиция <tex>1(2(x,x))</tex>.

Версия 16:21, 20 апреля 2010

Порождение нелинейных регрессионных моделей - порождение функций, зависящих от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.


Постановка задачи

Задана выборка из m пар (\mathbf{x}_i,y_i). Задан набор порождающих функций одного и двух аргументов [G_i]_{i=1}^{n} = [[g_l^{_{(1)}}(w_l,x)]_{l=1}^k,[g_m^{_{(2)}}(w_m,x,y)_{m=k+1}^n]], которые зависят от параметров \mathbf{w_i}=(w_1,...,w_{W_i}) и свободных переменных x,y. Функции гладкие параметрические. Требуется создать алгоритм, порождающий лексикографически упорядоченные суперпозиции возрастающей сложности. Каждая суперпозиция является регрессионной моделью одной независимой переменной. Сравнить качество моделей и регрессионные остатки на порожденном множестве.

Дополнительные предположения

Предполагается, что функции g^{_{(2)}}_i(w_i,x, y) корректно работают в случае вызова в виде g^{_{(2)}}_i(w_i,x).

Интерпретация на языке графов

Заметим вначале, что суперпозиция функций G_i может быть задана двоичным деревом T(V,X), вершины которого V_iG_i, корень – самая внешняя функция суперпозиции. Под глубиной вершины будем понимать расстояние от неё до корня. Если у вершины один потомок, то соответствующая функция запишется как g_i(g_j), если два – то g_i(g_j,g_k), если ноль – то g_i(x) или g_i(x,x).

Так, дереву А соответствует суперпозиция 2(1(1),2(1,1)), а дереву Б – суперпозиция 1(2(1,1)).

Возможна и другая постановка алгоритма. Она особенно ценна, если нельзя вызвать g^{_{(2)}}_i(x,x) в виде g^{_{(2)}}_i(x). Изменение состоит в том, что листья дерева суперпозиции считаются не функциями, а свободными переменными. В этом случае дереву А будет соответствовать суперпозиция 2(1(x), 2(x,x)) дереву Б – суперпозиция 1(2(x,x)).

Личные инструменты