Метод Белсли
Материал из MachineLearning.
м (→Анализ коллинеарности) |
м (→Анализ коллинеарности) |
||
Строка 2: | Строка 2: | ||
==Анализ коллинеарности== | ==Анализ коллинеарности== | ||
Линейная регрессионная модель: <br /> | Линейная регрессионная модель: <br /> | ||
- | <tex>y=X \beta + \varepsilon</tex><br /> | + | <tex>y=X \beta + \varepsilon.</tex> (1)<br /> |
где <tex>y</tex> - n-мерный ветор ответа(зависимой переменной), <tex>X</tex> - n x p (n>p) матрица признаков <tex>\beta</tex> - p-мерный вектор неизвестных коэффициентов, <tex>\varepsilon</tex> - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей <tex>{\sigma}^2 I</tex>, где <tex>I</tex> это n x n единичная матрица, а <tex>{\sigma}^2>0</tex>. Будем считать что <tex>X</tex> имеет ранг p. | где <tex>y</tex> - n-мерный ветор ответа(зависимой переменной), <tex>X</tex> - n x p (n>p) матрица признаков <tex>\beta</tex> - p-мерный вектор неизвестных коэффициентов, <tex>\varepsilon</tex> - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей <tex>{\sigma}^2 I</tex>, где <tex>I</tex> это n x n единичная матрица, а <tex>{\sigma}^2>0</tex>. Будем считать что <tex>X</tex> имеет ранг p. | ||
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения <tex>X</tex> определяется как: <br/> | Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения <tex>X</tex> определяется как: <br/> | ||
- | <tex>X=UDV^T</tex><br/> | + | <tex>X=UDV^T.</tex> (2)<br/> |
Где <tex>U</tex> - n x p ортогональная матрица, <tex>D</tex> - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями <tex>X</tex>, <tex>V</tex> - p x p ортогональная матрица, чьи колонки это собственные вектора <tex>X^T X</tex>. Если существует коллинеарная зависимоть, то | Где <tex>U</tex> - n x p ортогональная матрица, <tex>D</tex> - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями <tex>X</tex>, <tex>V</tex> - p x p ортогональная матрица, чьи колонки это собственные вектора <tex>X^T X</tex>. Если существует коллинеарная зависимоть, то | ||
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю. | будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю. | ||
Строка 12: | Строка 12: | ||
И рассмотрим разбиение<br/> | И рассмотрим разбиение<br/> | ||
<tex> | <tex> | ||
- | D=\begin{ | + | D=\begin{pmatrix} D_{s\times s} & O_{s \times (p-s)} \\ O_{(p-s) \times s} & D_{(p-s)\times (p-s)} \end{pmatrix}, |
</tex> | </tex> | ||
где <tex>D_{s\times s}</tex> и <tex>D_{(p-s)\times (p-s)}</tex> диогональные, и недиогональнык блоки нулевые. <tex>D_{s\times s}</tex>, или просто <tex>D_{S}</tex>, содержит достаточно большие сингулярные значения, а <tex>D_{(p-s)\times (p-s)}</tex>, или <tex>D_{N}</tex>, содержит близкие к нулю. | где <tex>D_{s\times s}</tex> и <tex>D_{(p-s)\times (p-s)}</tex> диогональные, и недиогональнык блоки нулевые. <tex>D_{s\times s}</tex>, или просто <tex>D_{S}</tex>, содержит достаточно большие сингулярные значения, а <tex>D_{(p-s)\times (p-s)}</tex>, или <tex>D_{N}</tex>, содержит близкие к нулю. |
Версия 17:29, 28 июня 2010
Линейные регрессионные модели часто используются для исследования зависимости между ответом и признаками, однако результаты часто сомнительны, так как данные не всегда подходящие. Например, при большом количестве признаков часто многие из них сильно зависимы друг от друга, и эта зависимость уменьшает вероятность получения адекватных результатов. Belsley, Kuh и Welsch предложили метод анализа мультиколлинеарности основанный на индексах обусловленности(the scaled condition indexes) и дисперсионных долях(the variance-decomposition proportions).
Содержание |
Анализ коллинеарности
Линейная регрессионная модель:
(1)
где - n-мерный ветор ответа(зависимой переменной), - n x p (n>p) матрица признаков - p-мерный вектор неизвестных коэффициентов, - p-мерный вектор случайного возмущения с нулевым матожиданием и ковариационной матрицей , где это n x n единичная матрица, а . Будем считать что имеет ранг p.
Если есть коллинеарность между признаками согласно Belsley имеет смысл использовать сингулярное разложение(SVD) чтобы определить вовлеченные переменные. Матрица сингулярного разложения определяется как:
(2)
Где - n x p ортогональная матрица, - p x p верхняя диагональная матрица, чьи неотрицательные элементы являются сингулярными значениями , - p x p ортогональная матрица, чьи колонки это собственные вектора . Если существует коллинеарная зависимоть, то
будут какие-либо сингулярные значения, скажем, (р - s), которые близки к нулю.
Предположим, что , или просто , элементы матрицы упорядочены так, что
И рассмотрим разбиение
где и диогональные, и недиогональнык блоки нулевые. , или просто , содержит достаточно большие сингулярные значения, а , или , содержит близкие к нулю.
Теперь разделим и соответственно:
где и соответствуют первым s наибольших сингулярных значений, а и содержат веторов соответствующих малым сингулярным значениям.
Матрица ортогональна, т.е , так же как и и . Таким образом :
Т.к V тоже ортогональна, то
Таким образом разложение нам дает:
Обозначим слагаемые в правой части как
Заметим что получившиеся матрицы ортогональны, т.е :
что обеспечивает возможность ортогонального разложения :
Здесь все матрицы имеют размер и полагая что имеет ранг p, и имеють ранг s и (p-s) соответственно.