Статистический анализ данных (курс лекций, К.В.Воронцов)
Материал из MachineLearning.
(Новая: {{TOCright}} Курс знакомит студентов с основными задачами и методами [[Прикладная статистика|прикладной ст...) |
м |
||
Строка 19: | Строка 19: | ||
Обзор необходимых сведений из теории вероятностей и математической статистики. Понятия простой выборки и статистики. Примеры статистик: моменты, асимметрия и эксцесс, вариационный ряд, эмпирическое распределение. Проверка статистических гипотез, понятия критической области, критической функции, ошибок I и II рода. Односторонние и двусторонние критерии. Свойства критериев: несмещённость, состоятельность, равномерная мощность. Статистические точечные оценки и их свойства: несмещённость, состоятельность, эффективность, достаточность, робастность. Интервальные оценки, понятия доверительного интервала и коэффициента доверия. Доверительное оценивание по вариационному ряду. Доверительные интервалы для среднего и медианы [Лапач, 104]. Метод доверительных интервалов Неймана. Понятия параметрических, непараметрических и робастных методов. Структура прикладной статистики. | Обзор необходимых сведений из теории вероятностей и математической статистики. Понятия простой выборки и статистики. Примеры статистик: моменты, асимметрия и эксцесс, вариационный ряд, эмпирическое распределение. Проверка статистических гипотез, понятия критической области, критической функции, ошибок I и II рода. Односторонние и двусторонние критерии. Свойства критериев: несмещённость, состоятельность, равномерная мощность. Статистические точечные оценки и их свойства: несмещённость, состоятельность, эффективность, достаточность, робастность. Интервальные оценки, понятия доверительного интервала и коэффициента доверия. Доверительное оценивание по вариационному ряду. Доверительные интервалы для среднего и медианы [Лапач, 104]. Метод доверительных интервалов Неймана. Понятия параметрических, непараметрических и робастных методов. Структура прикладной статистики. | ||
- | === Проверка гипотез о положении и рассеивании (параметрические критерии | + | === Параметрическая проверка гипотез === |
- | [Лапач, § 3.2]. Примеры прикладных задач из областей медицины, агрономии, маркетинга. Систематизация критериев. Проверка гипотезы равенства средних: критерий Стьюдента для одной и двух выборок, связанные выборки, метод множественных сравнений Шеффе, метод LSD. Пример: задача формирования ценовых коридоров. Проверка равенства дисперсий: критерии Фишера, Кохрена, Бартлета. Проверка нормальности: критерии Колмогорова-Смирнова, омега-квадрат фон Мизеса, хи-квадрат Пирсона. Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Упрощённые проверки по асимметрии и эксцессу. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77]. | + | Проверка гипотез о положении и рассеивании (нормальные параметрические критерии) [Лапач, § 3.2]. Примеры прикладных задач из областей медицины, агрономии, маркетинга. Систематизация критериев. Проверка гипотезы равенства средних: критерий Стьюдента для одной и двух выборок, связанные выборки, метод множественных сравнений Шеффе, метод LSD. Пример: задача формирования ценовых коридоров. Проверка равенства дисперсий: критерии Фишера, Кохрена, Бартлета. Проверка нормальности: критерии Колмогорова-Смирнова, омега-квадрат фон Мизеса, хи-квадрат Пирсона. Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Упрощённые проверки по асимметрии и эксцессу. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77]. |
- | === Проверка гипотез о положении и рассеивании (непараметрические ранговые критерии) | + | === Непараметрическая проверка гипотез === |
- | [Лапач, § 3.3]. Элементы теории измерений: номинальные, порядковые и количественные переменные; инварианты. Разновидности средних: по Коши, по Колмогорову, мода, медиана. Среднее в порядковой шкале [Орлов, гл. 3]. Пример: маркетинговое исследование привлекательности продуктов (образовательных услуг); важность постановки вопросов при формировании анкет [Орлов, 229]. Вариационный ряд, ранги и связки. Ранговые критерии: Уилкоксона-Манна-Уитни, знаков, Уилкоксона двухвыборочный, Уилкоксона для связных выборок, Краскела-Уоллиса, Зигеля-Тьюки, медианный одновыборочный и двухвыборочный. Доверительные интервалы для медианы (Уилкоксона-Мозеса) и сдвига (Уилкоксона-Тьюки). Множественные сравнения на основе рангов Фридмана. | + | Проверка гипотез о положении и рассеивании (непараметрические ранговые критерии) [Лапач, § 3.3]. Элементы теории измерений: номинальные, порядковые и количественные переменные; инварианты. Разновидности средних: по Коши, по Колмогорову, мода, медиана. Среднее в порядковой шкале [Орлов, гл. 3]. Пример: маркетинговое исследование привлекательности продуктов (образовательных услуг); важность постановки вопросов при формировании анкет [Орлов, 229]. Вариационный ряд, ранги и связки. Ранговые критерии: Уилкоксона-Манна-Уитни, знаков, Уилкоксона двухвыборочный, Уилкоксона для связных выборок, Краскела-Уоллиса, Зигеля-Тьюки, медианный одновыборочный и двухвыборочный. Доверительные интервалы для медианы (Уилкоксона-Мозеса) и сдвига (Уилкоксона-Тьюки). Множественные сравнения на основе рангов Фридмана. |
=== Дисперсионный анализ (ANOVA) === | === Дисперсионный анализ (ANOVA) === | ||
Строка 34: | Строка 34: | ||
[Лапач, 204, 316, Лагутин, Т2:174, Кулаичев, 162]. Критерий согласия Пирсона: простая гипотеза, сложная гипотеза. Таблица сопряженности: K×L и 2×2. Парадокс хи-квадрат [Лагутин, Т2:84]. Точный тест Фишера. Понятие закономерности в алгоритмах классификации, статистические и логические закономерности. Примеры: посещаемость сайтов пользователями Интернет, анализ результатов голосования, маркетинговые исследования. | [Лапач, 204, 316, Лагутин, Т2:174, Кулаичев, 162]. Критерий согласия Пирсона: простая гипотеза, сложная гипотеза. Таблица сопряженности: K×L и 2×2. Парадокс хи-квадрат [Лагутин, Т2:84]. Точный тест Фишера. Понятие закономерности в алгоритмах классификации, статистические и логические закономерности. Примеры: посещаемость сайтов пользователями Интернет, анализ результатов голосования, маркетинговые исследования. | ||
- | === Анализ рисков. Пробит- | + | === Анализ рисков. Пробит- и логит-анализ === |
[Лапач, 387]. Приложения в токсикологии, страховании, эконометрике (оценивание спроса). Оценивание апостериорных вероятностей в задачах классификации. Анализ кредитных рисков: оценивание вероятности дефолта, имитационное моделирование. Анализ выживаемости. Функция выживаемости и функция интенсивности рисков. Процедура Каплана-Мейера. Доверительный интервал выживаемости. Сравнение двух функций выживаемости: логранговый критерий, критерий Гехана. Случайные блуждания, задача о разорении игрока. | [Лапач, 387]. Приложения в токсикологии, страховании, эконометрике (оценивание спроса). Оценивание апостериорных вероятностей в задачах классификации. Анализ кредитных рисков: оценивание вероятности дефолта, имитационное моделирование. Анализ выживаемости. Функция выживаемости и функция интенсивности рисков. Процедура Каплана-Мейера. Доверительный интервал выживаемости. Сравнение двух функций выживаемости: логранговый критерий, критерий Гехана. Случайные блуждания, задача о разорении игрока. | ||
Строка 66: | Строка 66: | ||
#''Тюрин Ю. Н., Макаров А. А.'' Анализ данных на компьютере. — М.: Инфра-М, 2003. | #''Тюрин Ю. Н., Макаров А. А.'' Анализ данных на компьютере. — М.: Инфра-М, 2003. | ||
#''Вучков И., Бояджиева А., Солаков Е.'' Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987. | #''Вучков И., Бояджиева А., Солаков Е.'' Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987. | ||
- | #''Лукашин Ю. П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — | + | #''Лукашин Ю. П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003. |
- | М.: Финансы и статистика, 2003. | + | |
#''Friedman R., Hastie T., Tibshirani J.'' The elements of statistical learning. – Springer, 2001. | #''Friedman R., Hastie T., Tibshirani J.'' The elements of statistical learning. – Springer, 2001. | ||
#''Strijov, V., Shakin, V.'' [http://strijov.com/papers/10-v_strijov.pdf Index construction: the expert-statistical method]. // Environmental research, engineering and management 2003. No.4 (26), P.51-55. | #''Strijov, V., Shakin, V.'' [http://strijov.com/papers/10-v_strijov.pdf Index construction: the expert-statistical method]. // Environmental research, engineering and management 2003. No.4 (26), P.51-55. |
Версия 20:57, 24 апреля 2008
Курс знакомит студентов с основными задачами и методами прикладной статистики.
Цели курса — связать теорию и практику, научить студентов «видеть» статистические задачи в различных предметных областях и правильно применять методы прикладной статистики, показать на практических примерах возможности и ограничения статистических методов. Курс имеет скорее методологическую, чем математическую направленность и не содержит доказательств теорем.
Каждый метод описывается по единой схеме:
- постановка задачи,
- примеры прикладных задач из области экономики, социологии, производства, медицины,
- базовые предположения и границы применимости,
- описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её функция распределения с эскизом графика, критическая область),
- достоинства и недостатки,
- сравнение с другими методами.
Курс читается студентам 5 курса кафедры «Математические методы прогнозирования» ВМиК МГУ, начиная с 2007 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики, знакомы с элементами дискриминантного, факторного и кластерного анализа (по кафедральному курсу «Математические методы распознавания образов»), регрессионного анализа и анализа временных рядов (по кафедральному курсу ММП).
Программа курса
Введение
Обзор необходимых сведений из теории вероятностей и математической статистики. Понятия простой выборки и статистики. Примеры статистик: моменты, асимметрия и эксцесс, вариационный ряд, эмпирическое распределение. Проверка статистических гипотез, понятия критической области, критической функции, ошибок I и II рода. Односторонние и двусторонние критерии. Свойства критериев: несмещённость, состоятельность, равномерная мощность. Статистические точечные оценки и их свойства: несмещённость, состоятельность, эффективность, достаточность, робастность. Интервальные оценки, понятия доверительного интервала и коэффициента доверия. Доверительное оценивание по вариационному ряду. Доверительные интервалы для среднего и медианы [Лапач, 104]. Метод доверительных интервалов Неймана. Понятия параметрических, непараметрических и робастных методов. Структура прикладной статистики.
Параметрическая проверка гипотез
Проверка гипотез о положении и рассеивании (нормальные параметрические критерии) [Лапач, § 3.2]. Примеры прикладных задач из областей медицины, агрономии, маркетинга. Систематизация критериев. Проверка гипотезы равенства средних: критерий Стьюдента для одной и двух выборок, связанные выборки, метод множественных сравнений Шеффе, метод LSD. Пример: задача формирования ценовых коридоров. Проверка равенства дисперсий: критерии Фишера, Кохрена, Бартлета. Проверка нормальности: критерии Колмогорова-Смирнова, омега-квадрат фон Мизеса, хи-квадрат Пирсона. Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Упрощённые проверки по асимметрии и эксцессу. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77].
Непараметрическая проверка гипотез
Проверка гипотез о положении и рассеивании (непараметрические ранговые критерии) [Лапач, § 3.3]. Элементы теории измерений: номинальные, порядковые и количественные переменные; инварианты. Разновидности средних: по Коши, по Колмогорову, мода, медиана. Среднее в порядковой шкале [Орлов, гл. 3]. Пример: маркетинговое исследование привлекательности продуктов (образовательных услуг); важность постановки вопросов при формировании анкет [Орлов, 229]. Вариационный ряд, ранги и связки. Ранговые критерии: Уилкоксона-Манна-Уитни, знаков, Уилкоксона двухвыборочный, Уилкоксона для связных выборок, Краскела-Уоллиса, Зигеля-Тьюки, медианный одновыборочный и двухвыборочный. Доверительные интервалы для медианы (Уилкоксона-Мозеса) и сдвига (Уилкоксона-Тьюки). Множественные сравнения на основе рангов Фридмана.
Дисперсионный анализ (ANOVA)
[Лапач, 193, Кулаичев, 170]. Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж. Однофакторная параметрическая модель: метод Шеффе. Однофакторная непараметрическая модель: критерии Краскела-Уоллиса, Джонкхиера. Общий случай модели с постоянными факторами, теорема Кокрена. Двухфакторная непараметрическая модель: критерии Фридмана [Лапач, 203], Пейджа. Примеры: сравнение эффективности методов производства, агротехнических приёмов. Двухфакторный нормальный анализ. Задача ковариационного анализа.
Корреляционный анализ
[Лапач, 174]. Корреляция Пирсона, значимость коэффициента корреляции (критерий Стьюдента). Частная корреляция. Ранговая корреляция, коэффициенты корреляции Спирмена, Кенделла. Конкордация Кенделла.
Анализ таблиц сопряженности (кросстабуляции)
[Лапач, 204, 316, Лагутин, Т2:174, Кулаичев, 162]. Критерий согласия Пирсона: простая гипотеза, сложная гипотеза. Таблица сопряженности: K×L и 2×2. Парадокс хи-квадрат [Лагутин, Т2:84]. Точный тест Фишера. Понятие закономерности в алгоритмах классификации, статистические и логические закономерности. Примеры: посещаемость сайтов пользователями Интернет, анализ результатов голосования, маркетинговые исследования.
Анализ рисков. Пробит- и логит-анализ
[Лапач, 387]. Приложения в токсикологии, страховании, эконометрике (оценивание спроса). Оценивание апостериорных вероятностей в задачах классификации. Анализ кредитных рисков: оценивание вероятности дефолта, имитационное моделирование. Анализ выживаемости. Функция выживаемости и функция интенсивности рисков. Процедура Каплана-Мейера. Доверительный интервал выживаемости. Сравнение двух функций выживаемости: логранговый критерий, критерий Гехана. Случайные блуждания, задача о разорении игрока.
Выборочный анализ
Простой случайный выбор. Приложения в социологии, выборочном контроле качества, маркетинге [Лапач, 312, Орлов]. Пропорциональный выбор и преимущества стратификации. Оценки достаточной длины выборки [Лапач, 361]. Другие методы выбора: квотированный, кластерный, многоступенчатый кластерный. Выборочный контроль качества [Лапач, 351]. Одноступенчатый и двухступенчатый план контроля. Оперативная характеристика плана контроля. Парадоксы выборочного контроля.
Регрессионный анализ
Многомерная линейная регрессия. Метод наименьших квадратов. Гипотеза нормальности и ее нарушение. Гетероскедастичность. Обобщённый метод наименьших квадратов [Вучков, Айвазян, том 2]. Факторный анализ [Айвазян, том 1, 526, 551]: метод главных компонент, геометрическая интерпретация, выбор числа значимых факторов [Кулаичев, 315]. Устойчивость регрессионных моделей. Мультиколлинеарность. Ридж-регрессия. Лассо Тибширани. Отбор признаков и шаговая регрессия [Friedman]. Проблема выбросов и робастная регрессия. M-оценки, метод наименьших модулей. L-оценки, винзоризация выборки [Вучков].
Оценивание регрессионных моделей
Проверка адекватности модели: по выборочному коэффициенту детерминации, по дисперсии остатков, путём сравнения вложенных моделей. Анализ остатков. U-критерий Уилкоксона-Манна-Уитни, Зигеля-Тьюки, Вальда-Вольфовица. Пример прикладной задачи: анализ деятельности паевых инвестиционных фондов. Введение нелинейности в модель регрессии. Регуляризация коэффициентов регрессии, медленно изменяющихся во времени. Непараметрическая регрессия: ядерное сглаживание, формула Надарая-Ватсона. Выбор ядра и ширины окна. Совмещение многомерной линейной регрессии и одномерного сглаживания: метод настройки с возвращениями (backfitting). Проверка гипотезы о значимости (не равенства нулю) коэффициентов линейной регрессии. Доверительные интервалы для коэффициентов и отклика.
Анализ временных рядов
Понятие временного ряда. Стационарность и эргодичность. Основные компоненты временного ряда: тренд, сезонность и циклические колебания, шумы, календарные эффекты. Структурные модели временного ряда [Айвазян, том 2, Лукашин]. Прогнозирование временных рядов. Простейшие адаптивные методы прогнозирования. Экспоненциальное сглаживание, модели Брауна, Хольта-Уинтерса и Тейла-Вейджа. Процессы авторегрессии и проинтегрированного скользящего среднего (ARIMA) [Лукашин].
Построение интегральных индикаторов
Понятие интегрального индикатора. Примеры прикладных задач. Линейные и ранговые шкалы. Методы построения интегрального индикатора «без учителя» [Strijov, 2003]. Устойчивые интегральные индикаторы [Стрижов, 2007]. Экспертные оценки [Литвак, Лапач, 353]. Матрица парных сравнений. Экспертно-статистический метод [Айвазян, том 2]. Согласование экспертных оценок [Стрижов, 2006].
Панельные исследования
Литература
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Орлов А. И. Эконометрика. — М.: Экзамен, 2003.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Айвазян С. А., Мхитарян В. С. Прикладная статистика. Том 1. Теория вероятностей и прикладная статистика. — М.: Юнити, 2001.
- Айвазян С. А. Прикладная статистика. Том 2. Основы эконометрики. — М.: Юнити, 2001.
- Кулаичев А. П. Методы и средства комплексного анализа данных. — М.: Форум–Инфра-М, 2006.
- Тюрин Ю. Н., Макаров А. А. Анализ данных на компьютере. — М.: Инфра-М, 2003.
- Вучков И., Бояджиева А., Солаков Е. Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987.
- Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
- Friedman R., Hastie T., Tibshirani J. The elements of statistical learning. – Springer, 2001.
- Strijov, V., Shakin, V. Index construction: the expert-statistical method. // Environmental research, engineering and management 2003. No.4 (26), P.51-55.
- Стрижов В. В., Казакова Т. В. Устойчивые интегральные индикаторы с выбором опорного множества описаний. // Заводская лаборатория. Диагностика материалов. 2007 (7). C. 72-76.
- Литвак Б. Г. Экспертная информация: Методы получения и анализа. – М.: Радио и связь, 1982. – 184 с.
- Стрижов В. В. Уточнение экспертных оценок с помощью измеряемых данных. // Заводская лаборатория. Диагностика материалов. 2006 (7). С.59-64.