Анализ формальных понятий
Материал из MachineLearning.
(→Основные определения) |
|||
Строка 33: | Строка 33: | ||
(''более частным''), чем понятие <tex>Y = (C, D)</tex>, <tex>(A, B) \leq (C, D)</tex>, | (''более частным''), чем понятие <tex>Y = (C, D)</tex>, <tex>(A, B) \leq (C, D)</tex>, | ||
если <tex>A\subseteq C</tex>, что эквивалентно <tex>D\subseteq B</tex> (<tex>Y</tex> – ''обобщение'' <tex>X</tex>). | если <tex>A\subseteq C</tex>, что эквивалентно <tex>D\subseteq B</tex> (<tex>Y</tex> – ''обобщение'' <tex>X</tex>). | ||
+ | |||
+ | В работе Г. Биркгоф, 1989 было показано, что подмножества | ||
+ | произвольного множества, замкнутые относительно заданной на нем | ||
+ | операции замыкания, образуют полную решётку, а в работах | ||
+ | Wille, 1982, Ganter & Wille, 1999 было показано, что множество | ||
+ | всех понятий формального контекста <tex>\mathbb{K}</tex> образует полную решётку. | ||
+ | |||
+ | '''Определение 3.''' | ||
+ | Множество понятий контекста <tex>\mathfrak{B}(G,M,I)</tex> образует решётку <tex>\underline{{\mathfrak B}}(G,M,I) | ||
+ | \stackrel{\mathrm{def}}{=} (\mathfrak{B}(G,M,I),\wedge,\vee)</tex>, где <tex>(A_1, B_1)\wedge (A_2, B_2) = (A_1\cap A_2, (A_1\cap A_2)^{\prime})</tex>. и <tex>(A_1, B_1)\vee (A_2, B_2) = ((B_1\cap B_2)^{\prime}, B_1\cap B_2)</tex>. Такие решётки | ||
+ | называют ''решётками понятий'' или ''решётками Галуа'' (см. Ganter & Wille, 1999). | ||
==Прикладные задачи== | ==Прикладные задачи== |
Версия 18:52, 30 октября 2010
Анализ формальных понятий (АФП) – прикладная ветвь алгебраической теории решеток.
Содержание |
Основные определения
Определение 1. Формальный контекст есть тройка , где – множество, называемое множеством объектов, – множество, называемое множеством признаков, – отношение инцидентности.
Отношение интерпретируется следующим образом: для , имеет место , если объект обладает признаком .
Для формального контекста и произвольных и определена пара отображений:
которые задают соответствие Галуа между частично упорядоченными множествами и , а оператор является оператором замыкания на – дизъюнктном объединении и , т.е. для произвольного или имеют место следующие соотношения:
- (экстенсивность),
- (идемпотентность),
- если , то (изотонность).
Множество называется замкнутым если .
Определение 2. Формальное понятие формального контекста есть пара , где , , и . Множество называется объёмом, а – содержанием понятия .
Очевидно, что объем и содержание произвольного формального понятия являются замкнутыми множествами.
Множество формальных понятий контекста , которое мы будем обозначать посредством , частично упорядочено по вложению объёмов: формальное понятие является менее общим (более частным), чем понятие , , если , что эквивалентно ( – обобщение ).
В работе Г. Биркгоф, 1989 было показано, что подмножества произвольного множества, замкнутые относительно заданной на нем операции замыкания, образуют полную решётку, а в работах Wille, 1982, Ganter & Wille, 1999 было показано, что множество всех понятий формального контекста образует полную решётку.
Определение 3. Множество понятий контекста образует решётку , где . и . Такие решётки называют решётками понятий или решётками Галуа (см. Ganter & Wille, 1999).
Прикладные задачи
Программное обеспечение
Библиография и ссылки
- Биркгоф Г. Теория решеток. — М.: Наука, 1989.
- B. Ganter, R. Wille Formal Concept Analysis: Mathematical Foundations. — Springer, 1999.