Аппроксимация Лапласа (пример)
Материал из MachineLearning.
(→Описание алгоритма) |
|||
Строка 12: | Строка 12: | ||
==Описание алгоритма== | ==Описание алгоритма== | ||
+ | |||
+ | |||
+ | метрика Кульбака - Лейблера: <tex>D_{kl}(p,q)=\sum\limits_{x\in \mathcal{X}} p(x) \ln \frac{p(x)}{q(x)}</tex> | ||
==Вычислительный эксперимент== | ==Вычислительный эксперимент== |
Версия 06:24, 16 ноября 2010
Аппроксимация Лапласа - простой, но широко используемый способ нахождения нормального (Гауссово) распределения для апроксимации заданой плотности вероятности.
Содержание |
Сэмплирование
Сэмплирование – процесс выбора подмножества наблюдаемых величин из данного множества, для дальнейшего его анализа. Одно из основных приминений методов сэмплирования заключается в оценке мат. ожидания сложных вероятностных распределений: , для которых тяжело делать выборку непосредственно из распределения p(z). Однако, можно подсчитать значение p(z) в любой точке z. Один из наиболее простых методов подсчета мат. ожидаия – разбить ось z на равномерную сетку и подсчитать интеграл как сумму ≅. Существует несколько методов сэмплирования для создания подходящей выборки длинны L ???.
Постановка задачи
Задана выборка — множество значений свободных переменных и множество соответствующих им значений зависимой переменной. Необходимо для выбранной регрессионной модели показать зависимость среднеквадратичной ошибки от значений параметров модели: ; построить график и сделать апроксимацию Лапласа для него; используя метрику Кульбака - Лейблера, найти расстояния между получиными зависимостями.
Описание алгоритма
метрика Кульбака - Лейблера:
Вычислительный эксперимент
Пример 1
Задуманная функция . Берем линейную регрессионную модель с 2-мя параметрами: . Используя МНК находим оптимальное значение и (при которых SSE минимально). При фиксированном задем произвольное значение (500 значений на отрезке [-1;2]) истроим зависимость:
Повторим тоже самое, только теперь варируем сразу оба параметра и
и его апроксимация лапласса