Оценка эффективности природоохранных программ (пример)
Материал из MachineLearning.
(→Постановка задачи) |
|||
Строка 1: | Строка 1: | ||
- | |||
- | |||
Описан способ построения интегральных индикаторов качества объектов с использованием экспертных оценок и измеряемых данных. Каждый объект описан набором признаков в линейных шкалах. Используются экспертные оценки качества объектов и важности признаков, которые корректируются в процессе вычисления. Предполагается, что оценки выставлены в ранговых шкалах. Рассматривается задача получения таких интегральных индикаторов, которые не противоречили бы экспертным оценкам. Предложено два алгоритма уточнения экспертных оценок. | Описан способ построения интегральных индикаторов качества объектов с использованием экспертных оценок и измеряемых данных. Каждый объект описан набором признаков в линейных шкалах. Используются экспертные оценки качества объектов и важности признаков, которые корректируются в процессе вычисления. Предполагается, что оценки выставлены в ранговых шкалах. Рассматривается задача получения таких интегральных индикаторов, которые не противоречили бы экспертным оценкам. Предложено два алгоритма уточнения экспертных оценок. | ||
Строка 75: | Строка 73: | ||
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/NatureProgramsEfficiencyEstimation/doc/ Ссылка на текст статьи] | * [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/NatureProgramsEfficiencyEstimation/doc/ Ссылка на текст статьи] | ||
* [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/NatureProgramsEfficiencyEstimation/code/ Ссылка на код] | * [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/NatureProgramsEfficiencyEstimation/code/ Ссылка на код] | ||
+ | |||
+ | {{ЗаданиеВыполнено|Михаил Кузнецов|В.В.Стрижов|24 декабря 2010|Ivanov|Strijov}} | ||
+ | [[Категория:Практика и вычислительные эксперименты]] |
Версия 11:36, 15 декабря 2010
Описан способ построения интегральных индикаторов качества объектов с использованием экспертных оценок и измеряемых данных. Каждый объект описан набором признаков в линейных шкалах. Используются экспертные оценки качества объектов и важности признаков, которые корректируются в процессе вычисления. Предполагается, что оценки выставлены в ранговых шкалах. Рассматривается задача получения таких интегральных индикаторов, которые не противоречили бы экспертным оценкам. Предложено два алгоритма уточнения экспертных оценок.
Постановка задачи
Интегральный индикатор - линейная комбинация вида где - матрица объекты-признаки, - вектор весов признаков. Заданы в ранговых шкалах экспертные оценки: , допускающие произвольные монотонные преобразования. Пусть на наборах экспертных оценок введено отношение порядка такое, что Множество всех таких векторов задается системой линейных неравенств где Таким образом, заданным можно поставить в соответствие матрицы и размеров соответственно и . Определим — конус, задаваемый матрицей в пространстве интегральных индикаторов; — конус, задаваемый матрицей в пространстве весов признаков.
ЗАДАЧА 1. Требуется найти в конусах и векторы и , такие, что:
где --- евклидова метрика в пространстве .
ЗАДАЧА 2. Найти вектор весов, который максимизирует коэффициент корреляции между интегральными индикаторами:
по этому вектору весов построить уточненный интегральный индикатор
Здесь - коэффициент ранговой корреляции Спирмена.
Пути решения задач
РЕШЕНИЕ ЗАДАЧИ 1.
Построим итерационный алгоритм, последовательно находящий приближения векторов на четном и нечетном шаге. Векторы и будем считать решениями двух последовательно решаемых оптимизационных задач, полагая вектор на шаге .
Задача 2k:
minimize subject to
Задача 2k+1:
minimize
subject to
При решении задач, на каждом шаге значения констант и . при- нимаются равными значениям соответствующих решений и предыдущего шага.
РЕШЕНИЕ ЗАДАЧИ 2.
Поскольку в условии задачи 2 фигурируют ранги, нельзя решать эту задачу стандартными методами выпуклой оптимизации. Предлагается использовать стандартный генетический алгоритм.
Смотри также
Данная статья была создана в рамках учебного задания.
См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |