Участник:Kropotov/Публикации

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 12: Строка 12:
A. Osokin, D. Vetrov, D. Kropotov. 3D Reconstruction of Mouse Brain from a Sequence of 2D Brain Slices in Application to Allen Brain Atlas // Lecture Notes in Bioinformatics, Vol. 6160, Springer, 2010, pp. 291-303. [http://www.springerlink.com/content/978-3-642-14570-4 link]
A. Osokin, D. Vetrov, D. Kropotov. 3D Reconstruction of Mouse Brain from a Sequence of 2D Brain Slices in Application to Allen Brain Atlas // Lecture Notes in Bioinformatics, Vol. 6160, Springer, 2010, pp. 291-303. [http://www.springerlink.com/content/978-3-642-14570-4 link]
 +
 +
Ветров Д.П., Кропотов Д.А., Осокин А.А. Автоматическое определение количества компонент в ЕМ-алгоритме восстановления смеси нормальных распределений // Ж. вычисл. матем. и матем. физ., 2010, т. 50, №4, с. 1-14. [http://www.springerlink.com/content/p3j0060km3357131/ (PDF, 303 Кб)]
 +
 +
'''2009'''
 +
 +
Ветров Д.П., Кропотов Д.А., Пташко Н.О. Об унимодальности непрерывного расширения критерия Акаике // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 11-13. [[Media:Kropotov09_MMRO_Unimodal.pdf|(PDF, 800 Кб)]]
 +
 +
Ветров Д.П., Кропотов Д.А. Алгоритм множественного трекинга лабораторных животных // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 499-502. [[Media:Kropotov09_MMRO_Multitracking.pdf|(PDF, 832 Кб)]]
 +
 +
Ломакина-Румянцева Е.И., Ветров Д.П., Кропотов Д.А. Автоматическая сегментация поведения лабораторных животных на основе выделяемых контуров // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 556-559. [[Media:Kropotov09_MMRO_Segmentation.pdf|(PDF, 815 Кб)]]
 +
 +
Осокин А.А., Ветров Д.П., Кропотов Д.А. Построение трехмерной модели мозга мыши по набору двумерных изображений из Алленовского Атласа // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 582-585. [[Media:Kropotov09_MMRO_3Dbrain.pdf|(PDF, 962 Кб)]]
 +
 +
Темлянцев А.В., Ветров Д.П., Кропотов Д.А. Структурный анализ поведенческой динамики // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 602-605. [[Media:Kropotov09_MMRO_Structural.pdf|(PDF, 1 Мб)]]
 +
 +
Ветров Д.П., Кропотов Д.А., Пташко Н.О. О достижении компромисса между точностью и устойчивостью классификаторов в задаче выбора наилучшей ядровой функции при байесовском обучении // Вестник Тверского Государственного Университета. Серия «Прикладная математика», №3(14), 2009, стр. 45-54.
 +
 +
Д.П. Ветров, Д.А. Кропотов, Н.О. Пташко. Эффективный метод отбора признаков в линейной регрессии с помощью обобщенного информационного критерия Акаике // Ж. вычисл. матем. и матем. физ., 2009, том 49, №11, с.1-14. [http://www.springerlink.com/content/w5j61427755751m4/ (PDF, 289 Кб)]
 +
 +
D.Kropotov, N.Ptashko, D.Vetrov. Relevant Regressors Selection by Continuous AIC // Pattern Recognition and Image Analysis, Vol. 19, No. 3, 2009, pp. 456-464. [http://www.springerlink.com/content/3866612186523578/ (PDF, 314 Кб)]
 +
 +
D.Kropotov, D.Vetrov. General Solutions for Information-Based and Bayesian Approaches to Model Selection in Linear Regression and Their Equivalence // Pattern Recognition and Image Analysis, Vol. 19, No. 3, 2009, pp. 447-455. [http://www.springerlink.com/content/w1722x4387p64334/ (PDF, 284 Кб)]
 +
 +
E.Lomakina-Rumyantseva, P.Voronin, D.Kropotov, D.Vetrov, A.Konushin. Video Tracking and Behaviour Segmentation of Laboratory Rodents // Pattern Recognition and Image Analysis, Vol. 19, No. 4, 2009, pp. 616-622. [http://www.springerlink.com/content/a50g36n04m4066n8/ (PDF, 260 Кб)]
 +
 +
Osokin A., Vetrov D., Kropotov D. 3D Reconstruction of Mouse Brain from Allen Brain Atlas // Proc. of 10th International Conference on Pattern Recognition and Image Processing 2009, Minsk: Publ. center of BSU, pp. 219-223.
 +
 +
Osokin A., Belotserkovky A., Vetrov D., Kropotov D., Zhuravlev Yu. Mouse Brain Slice Segmentation for Analysis of Physiological Activity // Proc. of 10th International Conference on Pattern Recognition and Image Processing 2009, Minsk: Publ. center of BSU, pp. 348-353.
<!--
<!--
-
60. Осокин А.А., Ветров Д.П., Кропотов Д.А., Конушин А.С., Анохин К.В. Совмещение изображений срезов мозга с помощью эластичной деформации // Материалы международной конференции «Современные проблемы математики, механики и их приложений», М.: издательство «Университетская книга», 2009, стр. 329.
 
-
61. Osokin A., Vetrov D., Kropotov D. 3D Reconstruction of Mouse Brain from Allen Brain Atlas // Proc. of 10th International Conference on Pattern Recognition and Image Processing 2009, Minsk: Publ. center of BSU, pp. 219-223.
 
-
62. Osokin A., Belotserkovky A., Vetrov D., Kropotov D., Zhuravlev Yu. Mouse Brain Slice Segmentation for Analysis of Physiological Activity // Proc. of 10th International Conference on Pattern Recognition and Image Processing 2009, Minsk: Publ. center of BSU, pp. 348-353.
 
-
63. D.Kropotov, N.Ptashko, D.Vetrov. Relevant Regressors Selection by Continuous AIC // Pattern Recognition and Image Analysis, Vol. 19, No. 3, 2009, pp. 456-464.
 
-
64. D.Kropotov, D.Vetrov. General Solutions for Information-Based and Bayesian Approaches to Model Selection in Linear Regression and Their Equivalence // Pattern Recognition and Image Analysis, Vol. 19, No. 3, 2009, pp. 447-455.
 
-
65. E.Lomakina-Rumyantseva, P.Voronin, D.Kropotov, D.Vetrov, A.Konushin. Video Tracking and Behaviour Segmentation of Laboratory Rodents // Pattern Recognition and Image Analysis, Vol. 19, No. 4, 2009, pp. 616-622.
 
-
66. Д.П. Ветров, Д.А. Кропотов, Н.О. Пташко. Эффективный метод отбора признаков в линейной регрессии с помощью обобщенного информационного критерия Акаике // Ж. вычисл. матем. и матем. физ., 2009, том 49, №11, с.1-14.
 
-
67. Ветров Д.П., Кропотов Д.А., Пташко Н.О. Об унимодальности непрерывного расширения критерия Акаике // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 11-13.
 
-
68. Ветров Д.П., Кропотов Д.А. Алгоритм множественного трекинга лабораторных животных // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 499-502.
 
-
69. Ломакина-Румянцева Е.И., Ветров Д.П., Кропотов Д.А. Автоматическая сегментация поведения лабораторных животных на основе выделяемых контуров // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 556-559.
 
-
70. Осокин А.А., Ветров Д.П., Кропотов Д.А. Построение трехмерной модели мозша мыши по набору двумерных изображений из Алленовского Атласа // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 582-585.
 
-
71. Темлянцев А.В., Ветров Д.П., Кропотов Д.А. Структурный анализ поведенческой динамики // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 602-605.
 
72. A. Osokin, A. Lebedev, D. Vetrov, V. Galatenko, D. Kropotov, A. Nedzved, A. Konushin, K. Anokhin. Adaptation of Mouse Brain Gene Expression Data for further Statistical Parametrical Mapping Analysis // Proc. of 19th International Conference on Computer Graphics and Vision, 2009, MAKS Press, pp. 42-48.
72. A. Osokin, A. Lebedev, D. Vetrov, V. Galatenko, D. Kropotov, A. Nedzved, A. Konushin, K. Anokhin. Adaptation of Mouse Brain Gene Expression Data for further Statistical Parametrical Mapping Analysis // Proc. of 19th International Conference on Computer Graphics and Vision, 2009, MAKS Press, pp. 42-48.
-
73. Ветров Д.П., Кропотов Д.А., Пташко Н.О. О достижении компромисса между точностью и устойчивостью классификаторов в задаче выбора наилучшей ядровой функции при байесовском обучении // Вестник Тверского Государственного Университета. Серия «Прикладная математика», №3(14), 2009, стр. 45-54.
 
-
74. D. Kropotov, N. Ptashko, D. Vetrov. An Automatic Relevance Determination Procedure Based on AIC for Linear Regression Problems // Proc. of the International Eugene Lawler Ph.D. School, 2009, pp. 110-123.
 
-
75. D. Kropotov, D. Vetrov. General L2-Regularization in Bayesian and AIC Linear Regression // Proc. of the International Eugene Lawler Ph.D. School, 2009, pp.124-137.
 
-
76. Ветров Д.П., Кропотов Д.А., Осокин А.А. Автоматическое определение количества компонент в ЕМ-алгоритме восстановления смеси нормальных распределений // Ж. вычисл. матем. и матем. физ., 2010, т. 50, №4, с. 1-14.
 
-
77.
 
-
78.
 
-->
-->

Версия 13:48, 24 декабря 2010

2010

D. Kropotov, D. Vetrov, L. Wolf, T. Hassner. Variational Relevance Vector Machine for Tabular Data // JMLR Workshop & Conference Proceedings, Vol. 13, 2010, pp. 79-94. (PDF, 584 Кб)

A. Osokin, D. Vetrov, A. Lebedev, V. Galatenko, D. Kropotov, K. Anokhin. An Interactive Method of Anatomical Segmentation and Gene Expression Estimation for an Experimental Mouse Brain Slice // Proc. CIBB 2010. (PDF, 598 Кб)

D. Kropotov, D. Laptev, A. Osokin, D. Vetrov. Signal Segmentation with Label Frequency Constraints using Dual Decomposition Approach for Hidden Markov Models // Proc. of 8th International Conference “Intelligent Information Processing”, 2010, pp. 403-406. (PDF, 151 Кб)

D. Kropotov, D. Vetrov, L. Wolf, T. Hassner. Bayesian Logistic Regression for Classification of Tabular Data // Proc. of 8th International Conference “Intelligent Information Processing”, 2010, pp. 103-106. (PDF, 217 Кб)

D. Kropotov, D. Laptev, A. Osokin, D. Vetrov. Variational Segmentation Algorithms with Label Frequency Constraints // Pattern Recognition and Image Analysis, 2010, V. 20, No. 3, pp. 324-334. (PDF, 613 Кб)

A. Osokin, D. Vetrov, D. Kropotov. 3D Reconstruction of Mouse Brain from a Sequence of 2D Brain Slices in Application to Allen Brain Atlas // Lecture Notes in Bioinformatics, Vol. 6160, Springer, 2010, pp. 291-303. link

Ветров Д.П., Кропотов Д.А., Осокин А.А. Автоматическое определение количества компонент в ЕМ-алгоритме восстановления смеси нормальных распределений // Ж. вычисл. матем. и матем. физ., 2010, т. 50, №4, с. 1-14. (PDF, 303 Кб)

2009

Ветров Д.П., Кропотов Д.А., Пташко Н.О. Об унимодальности непрерывного расширения критерия Акаике // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 11-13. (PDF, 800 Кб)

Ветров Д.П., Кропотов Д.А. Алгоритм множественного трекинга лабораторных животных // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 499-502. (PDF, 832 Кб)

Ломакина-Румянцева Е.И., Ветров Д.П., Кропотов Д.А. Автоматическая сегментация поведения лабораторных животных на основе выделяемых контуров // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 556-559. (PDF, 815 Кб)

Осокин А.А., Ветров Д.П., Кропотов Д.А. Построение трехмерной модели мозга мыши по набору двумерных изображений из Алленовского Атласа // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 582-585. (PDF, 962 Кб)

Темлянцев А.В., Ветров Д.П., Кропотов Д.А. Структурный анализ поведенческой динамики // Труды 14-ой Всероссийской конференции «Математические методы распознавания образов», М.: Макс Пресс, 2009, с. 602-605. (PDF, 1 Мб)

Ветров Д.П., Кропотов Д.А., Пташко Н.О. О достижении компромисса между точностью и устойчивостью классификаторов в задаче выбора наилучшей ядровой функции при байесовском обучении // Вестник Тверского Государственного Университета. Серия «Прикладная математика», №3(14), 2009, стр. 45-54.

Д.П. Ветров, Д.А. Кропотов, Н.О. Пташко. Эффективный метод отбора признаков в линейной регрессии с помощью обобщенного информационного критерия Акаике // Ж. вычисл. матем. и матем. физ., 2009, том 49, №11, с.1-14. (PDF, 289 Кб)

D.Kropotov, N.Ptashko, D.Vetrov. Relevant Regressors Selection by Continuous AIC // Pattern Recognition and Image Analysis, Vol. 19, No. 3, 2009, pp. 456-464. (PDF, 314 Кб)

D.Kropotov, D.Vetrov. General Solutions for Information-Based and Bayesian Approaches to Model Selection in Linear Regression and Their Equivalence // Pattern Recognition and Image Analysis, Vol. 19, No. 3, 2009, pp. 447-455. (PDF, 284 Кб)

E.Lomakina-Rumyantseva, P.Voronin, D.Kropotov, D.Vetrov, A.Konushin. Video Tracking and Behaviour Segmentation of Laboratory Rodents // Pattern Recognition and Image Analysis, Vol. 19, No. 4, 2009, pp. 616-622. (PDF, 260 Кб)

Osokin A., Vetrov D., Kropotov D. 3D Reconstruction of Mouse Brain from Allen Brain Atlas // Proc. of 10th International Conference on Pattern Recognition and Image Processing 2009, Minsk: Publ. center of BSU, pp. 219-223.

Osokin A., Belotserkovky A., Vetrov D., Kropotov D., Zhuravlev Yu. Mouse Brain Slice Segmentation for Analysis of Physiological Activity // Proc. of 10th International Conference on Pattern Recognition and Image Processing 2009, Minsk: Publ. center of BSU, pp. 348-353.


Личные инструменты