Прогнозирование функциями дискретного аргумента (пример)
Материал из MachineLearning.
Строка 54: | Строка 54: | ||
С другой стороны, для сглаживания случайных отклонений, <tex>\alpha</tex> нужно уменьшить: <tex> \alpha \rightarrow 0,\; \hat{y}_{t+1} \rightarrow \bar{y}_t</tex>. | С другой стороны, для сглаживания случайных отклонений, <tex>\alpha</tex> нужно уменьшить: <tex> \alpha \rightarrow 0,\; \hat{y}_{t+1} \rightarrow \bar{y}_t</tex>. | ||
Т.о. эти два требования находятся в противоречии. Мы будем брать <tex>\alpha</tex> из интервала (0,0.5). | Т.о. эти два требования находятся в противоречии. Мы будем брать <tex>\alpha</tex> из интервала (0,0.5). | ||
+ | |||
+ | <b><big>Локальные методы прогнозирования</big></b> | ||
+ | |||
+ | Музыкальный временной ряд отличается от обычного хаотического: он почти не хаотичен (для специалистов, я думаю, слово "почти"\ можно убрать). В нем встречаются похожие, повторяющиеся и прочие регулярные структуры. | ||
+ | |||
+ | |||
+ | |||
+ | <i>Регулярной структурой</i> назовем кусок временного ряда, обладающий автономностью по отношению к остальному временному ряду, склонный к повторению в немного искаженной форме | ||
+ | . | ||
+ | Очевидно, что "немного" должно определяться некой функцией близости. В работе использовался вариант коэффициента корреляции Неймана-Пирсона: | ||
+ | |||
+ | <center><tex> | ||
+ | k(f,g) = \frac{\int fg}{\sqrt{\int f^2}\cdot\sqrt{\int g^2}}, | ||
+ | |||
+ | </tex></center> | ||
+ | где интеграл понимается в смысле суммы в силу дискретности функций. | ||
+ | |||
+ | Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения. | ||
+ | |||
+ | Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку. |
Версия 17:10, 3 сентября 2011
|
Введение
В статье представлена попытка прогнозирования таких специфических временных рядов, как монофонические мелодии. Были осуществлены три различных подхода: экспоненциальное сглаживание, локальное прогнозирование и поиск постоянных закономерностей.
Предлагается опробовать первый метод в традиционной его форме, чтобы ответить на вопрос, пригоден ли он для решения данной задачи. Затем предлагается во втором методе проверить работоспособность коэффициента корреляции Пирсона в качестве меры сходства. Третий будет использоваться в упрощенном варианте.
Постановка задачи
Мелодия есть функция , где — позиция ноты, — конечное множество нот, занумерованных в порядке увеличения тона, — длительность ноты, в секундах. Таким образом, будем работать с пучком из двух временных рядов.
Предполагается, что мелодия дана законченная, но без нескольких финальных нот(в данной статье одной). Необходимо их предсказать.
Пути решения задачи
Экспоненциальное сглаживание
Пусть — временной ряд.
Экспоненциальное сглаживание ряда осуществляется по рекуррентной формуле:
Чем меньше , тем в большей степени фильтруются, подавляются колебания исходного ряда и шума.
Если последовательно использовать рекуррентное это соотношение, то экспоненциальную среднюю можно выразить через значения временного ряда .
После появления работ Р. Брауна экспоненциальное сглаживание часто используется для решения задачи краткосрочного прогнозирования временных рядов следующим способом.
Пусть задан временной ряд: .
Необходимо решить задачу прогнозирования временного ряда, т.е. найти
— горизонт прогнозирования, необходимо, чтобы
Предположим, что D - невелико (краткосрочный прогноз), то для решения такой задачи используют модель Брауна.
.
Если рассматривать прогноз на 1 шаг вперед, то — погрешность этого прогноза, а новый прогноз получается в результате корректировки предыдущего прогноза с учетом его ошибки — суть адаптации.
При краткосрочном прогнозировании желательно как можно быстрее отразить новые изменения и в то же время как можно лучше "очистить" ряд от случайных колебаний. Т.о. следует увеличивать вес более свежих наблюдений: . С другой стороны, для сглаживания случайных отклонений, нужно уменьшить: . Т.о. эти два требования находятся в противоречии. Мы будем брать из интервала (0,0.5).
Локальные методы прогнозирования
Музыкальный временной ряд отличается от обычного хаотического: он почти не хаотичен (для специалистов, я думаю, слово "почти"\ можно убрать). В нем встречаются похожие, повторяющиеся и прочие регулярные структуры.
Регулярной структурой назовем кусок временного ряда, обладающий автономностью по отношению к остальному временному ряду, склонный к повторению в немного искаженной форме . Очевидно, что "немного" должно определяться некой функцией близости. В работе использовался вариант коэффициента корреляции Неймана-Пирсона:
где интеграл понимается в смысле суммы в силу дискретности функций.
Прогноз будет строиться на естественном предположении компактности регулярных структур: у похожих кусков временного ряда должны быть похожие продолжения.
Воспользуемся самым простым локальным алгоритмом, который ищет ближайшего соседа к прогнозируемому участку.