Статистический анализ данных (курс лекций, К.В.Воронцов)/2011
Материал из MachineLearning.
Riabenko (Обсуждение | вклад)
(Новая: {{TOCright}} = Задание 1. Исследование свойств одномерных статистических критериев на модельных данных = Не...)
К следующему изменению →
Версия 21:18, 29 сентября 2011
|
Задание 1. Исследование свойств одномерных статистических критериев на модельных данных
Необходимо провести исследование одного или нескольких классических критериев проверки статистических гипотез. Интерес представляет поведение достигаемого уровня значимости (p-value) как функции размера выборок и параметров распределения. В соответствии с индивидуальными параметрами задания необходимо указанным способом сгенерировать одну или несколько выборок из заданного распределения, выполнить проверку гипотезы при помощи соответствующего критерия, а затем многократно повторить эту процедуру для различных значений параметров. По результатам расчётов необходимо построить требуемые в задании графики, среди которых могут быть следующие:
- график зависимости достигаемого уровня значимости от значений параметров при однократном проведении эксперимента;
- график зависимости достигаемого уровня значимости одного или двух критериев от значений параметров, усреднённого по большому количеству повторений эксперимента (например, по 1000 повторений);
- график с эмпирическими оценками мощности одного или двух критериев для разных значений параметров.
В качестве оценки мощности принимается доля отвержений нулевой гипотезы среди всех проверок. То есть, если эксперимент повторялся раз для каждого набора значений параметра, и в из случаев гипотеза была отвергнута на некотором фиксированном уровне значимости (примем ), оценкой мощности будет отношение .
Необходимо сдать: выполненный в LaTex или Microsoft Word отчёт с описанием алгоритма, построенными графиками и выводами (объяснение полученных результатов моделирования, границы применимости критерия и т.д.), а также *.m-файл или R-скрипт, при запуске которого на экран выводятся графики, соответствующие имеющимся в отчёте.
Задание принимается до первого ноября.
Пример задания
Исследуем чувствительность классического двухвыборочного критерия Стьюдента для проверки гипотезы однородности против альтернативы сдвига при зашумлении выборок наблюдениями, взятыми из равномерного распределения.
— выборка длины из смеси стандартного нормального и равномерного распределений с весами и соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит , то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного).
— аналогичная выборка.
При каждом значении выборки для разных значений генерируются независимо.
Во-первых, заметим, что однократная генерация выборок даёт достаточно нестабильные результаты, поэтому для Видно, что при достаточно большой разнице между средними и большом размере выборок наличие шума не мешает уверенно отклонять гипотезу однородности. Наоборот, когда разница между средними невелика (меньше 0.2-0.5 в зависимости от размера выборок), мощность близка к нулю, а средний достигаемый уровень значимости колеблется около 0.5, что логично, так как его распределение при справедливости нулевой гипотезы равномерно на .
Чтобы оценить вклад зашумления выборок, оценим при всех значениях параметра мощность критерия и средний достигаемый уровень значимости на аналогичных выборках без шума и сравним результаты.
Видно, что наличие шума всё меньше влияет на работу критерия с ростом объёма выборок и разницы между их средними. Тем не менее, в некоторых областях потеря мощности из-за 10% зашумления может составлять до 20%, а средний достигаемый уровень значимости может быть выше на 0.1.
Отметим, что приведённые количественные выводы справедливы только для шума рассматриваемой структуры.