Суммаризация в анализе ДНК-микрочипов

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
Строка 20: Строка 20:
В RMA значения коэффициентов оцениваются при помощи алгоритма median polish<ref name="medianpolish"> Holder, D., Raubertas, R., & Pikounis, V. (2001). Statistical analysis of high density oligonucleotide arrays: a SAFER approach. Proceedings of the ASA Annual Meeting. Atlanta, GA. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.8156&amp;rep=rep1&amp;type=pdf, </ref>.
В RMA значения коэффициентов оцениваются при помощи алгоритма median polish<ref name="medianpolish"> Holder, D., Raubertas, R., & Pikounis, V. (2001). Statistical analysis of high density oligonucleotide arrays: a SAFER approach. Proceedings of the ASA Annual Meeting. Atlanta, GA. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.8156&amp;rep=rep1&amp;type=pdf, </ref>.
 +
 +
=== fRMA (Frozen Robust Multi-Array Analysis) ===
 +
 +
Рассматривается следующая модель уровня экспрессии<ref name="frma">McCall, M. N., Bolstad, B. M., & Irizarry, R. a. (2010). Frozen robust multiarray analysis (fRMA). Biostatistics (Oxford, England), 11(2), 242-53. doi:10.1093/biostatistics/kxp059</ref>:
 +
 +
{{eqno|1}}
 +
::<tex> Y_{ijkn} = \theta_{in} + \phi_{jn} + \gamma_{jkn} + \varepsilon_{ijkn} </tex>
 +
 +
Здесь используются следующие обозначения:
 +
 +
* <tex>k</tex> — номер партии микрочипов <tex> k \in 1, \dots, K </tex>. Два чипа относятся к одной партии, если эксперименты с ними были проведены в одной лаборатории в одно и то же время.
 +
* <tex>i</tex> — номер микрочипа <tex> i \in 1, \dots, I_k </tex>.
 +
* <tex>n</tex> — номер набора проб <tex> n \in 1, \dots, N </tex>. Также через <tex>n</tex> мы будем обозначать номер гена, соответствующего <tex>n</tex>-му набору проб.
 +
* <tex>j</tex> — номер пробы <tex> i \in 1, \dots, J_n </tex>.
 +
* <tex>Y_{ijkn}</tex> — предобработанная (с вычтенным фоном и нормализованная) логарифмированная интенсивность пробы <tex>j</tex> из набора проб <tex>n</tex> микрочипа <tex>i</tex> из партии микрочипов <tex>k</tex>.
 +
* <tex>\theta_{in}</tex> — экспрессия гена <tex>n</tex> на <tex>i</tex>-м микрочипе.
 +
* <tex>\phi_{jn}</tex> — коэффициент сродства пробы <tex>j</tex> гену <tex>n</tex>.
 +
* <tex>\gamma_{jkn}</tex> — случайная ошибка, вызывающая различия между партиями проб.
 +
* <tex>\varepsilon_{ijkn}</tex> — случайная ошибка, вызывающая различия между пробами на чипах одной партии.
 +
 +
В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: <tex>\mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2</tex>.
 +
Также делается предположение, что <tex>\gamma_{jkn}</tex> — это случайная величина, дисперсия которой не зависит от партии чипов: <tex>\mathbb{D} \gamma_{jkn} = \tau_{jn}^2</tex>.
 +
 +
==== Обучение модели ====
 +
 +
Для обучения необходимы данные с большого числа микрочипов.
 +
 +
Сначала ко всем микрочипам применяется метод квантильной нормализации, приводящий все данные к одному распределению.
 +
В дальнейшем будем называть это распределение «представительным».
 +
 +
Непосредственная настройка модели {{eqref|1}} при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче.
 +
Рассматривается упрощенная модель
 +
::<tex> Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} </tex>.
 +
 +
По обучающей выборке находятся робастные оценки параметров <tex>\hat \theta_{in} </tex> и <tex> \hat \phi_{jn} </tex> для данной модели.
 +
Затем вычисляются остатки <tex>r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) </tex>, с помощью которых оцениваются дисперсии <tex>\sigma_{jn}^2</tex> и <tex>\tau_{jn}^n</tex>:
 +
::<tex> \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2</tex>;
 +
::<tex> \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2</tex>,
 +
 +
где <tex>\bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} </tex>.
 +
 +
==== Обработка новых чипов ====
 +
 +
Рассмотрим процесс обработки новых чипов.
 +
Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже.
 +
 +
В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства:
 +
{{eqno|2}}
 +
::<tex> Y_{ijln}^* = Y_{ijln} - \hat \phi_{jn} \approx \theta_{in} + \gamma_{jln} + \varepsilon_{ijln} </tex>
 +
 +
(здесь <tex>l</tex> — это индекс новой партии микрочипов).
 +
 +
Далее из скорректированных интенсивностей нужно получить робастную оценку для <tex>\theta</tex>.
 +
Это делается разными способами в зависимости от того, из скольких чипов состоит партия.
 +
 +
===== Один микрочип =====
 +
 +
В данном случае индексы <tex>i</tex> и <tex>l</tex> могут быть опущены опущены, так как обрабатывается один микрочип и одна партия.
 +
 +
Логарифмированная концентрация оценивается следующим образом:
 +
::<tex> \hat \theta_n = \frac{\sum_{j = 1}^{J_n} \frac{w_{jn}}{v_{jn}} Y_{jn}^*}{\sum_{j = 1}^{J_n} \frac{w_{jn}}{v_{jn}}} </tex>,
 +
где <tex> v_{jn} = \hat \tau_{jn}^2 + \hat \sigma_{jn}^2 </tex> — оценка дисперсии скорректированной интенсивности <tex>Y_{jn}^*</tex>, а <tex> w_{jn} </tex> — веса, соответствующие некоторой [[М-оценка|M-оценке]].
 +
 +
Данная оценка учитывает с низкими весами выбросы (так как им соответствуют маленькие <tex>w_{jn}</tex>) и пробы с большой дисперсией шума.
 +
 +
===== Партия микрочипов =====
 +
 +
В данном случае индекс <tex>l</tex> может быть опущен, так как обрабатывается одна партия микрочипов. Число чипов в новой партии будем обозначать через <tex>I</tex>
 +
 +
Введем следующие обозначения:
 +
* <tex> {\mathbf X} = 1_{J_n \times 1} \otimes \mathbf{E}_{I \times I} </tex> — индикаторная матрица (<tex> 1_{m \times n} </tex> — матрица из единиц размера <tex> m \times n </tex>; <tex> {\mathbf E}_{n \times n} </tex> — единичная матрица размера <tex> n \times n </tex>; <tex> \otimes </tex> — [http://ru.wikipedia.org/wiki/Произведение_Кронекера произведение Кронекера]).
 +
* <tex> {\mathbf \theta} = \left( \theta_{1 n}, \dots, \theta_{I n} \right) </tex> — вектор экспрессий.
 +
* <tex> {\mathbf Y_{jn}^*} = \left( Y_{ijn}^* \right)_{i = 1}^{I} \in \mathbb{R}^I </tex> — вектор интенсивностей пробы <tex>j</tex> набора <tex>n</tex> на всех чипах партии.
 +
* <tex> {\mathbf Y_n^*} = \left( {\mathbf Y_{1,n}^*, \dots, Y_{J_n, n}^* } \right)^T \in \mathbb{R}^{I J_n}</tex> — вектор интенсивностей всех проб к гену <tex>n</tex> на всех чипах партии.
 +
* <tex> {\mathbf \delta} \in \mathbb{R}^{I J_n} </tex> — вектор случайных ошибок, соответствующих интенсивностям из <tex> {\mathbf Y_n^*} </tex>.
 +
 +
Тогда модель {{eqref|2}} можно записать в матричном виде:
 +
::<tex> \mathbf Y_n^* = X \theta + \delta </tex>
 +
 +
Матрица ковариации вектора случайных ошибок <tex> \mathbf \delta </tex> задается следующим образом:
 +
::<tex> {\mathbf \delta}_{i_1 j_1, i_2 j_2} = cov \left( Y_{i_1 j_1 n}^*,\; Y_{i_2 j_2 n}^* \right) = \begin{cases} \tau_{jn}^2 + \sigma_{jn}^2, & \text{if } j_1 = j_2 = j, \; i_1 = i_2, \\ \tau_{jn}^2, & \text{if } j_1 = j_2 = j, \; i_1 \neq i_2, \\ 0, & \text{otherwise} \end{cases} </tex>
 +
 +
С учетом данного выражения ковариационную матрицу вектора <tex> \mathbf \delta </tex> можно записать следующим образом:
 +
::<tex> {\mathbf \Sigma} = diag \left( \tau_{1n}^2, \dots, \tau_{J_n, n}^2 \right) \otimes 1_{I \times I} + diag \left( \sigma_{1n}^2, \dots, \sigma_{J_n, n}^2 \right) \otimes {\mathbf E}_{I \times I} </tex>
 +
 +
Для параметров <tex> \tau_{jn}^2 </tex> И <tex> \sigma_{jn}^2 </tex> уже получены оценки, поэтому матрицу <tex> \mathbf \Sigma </tex> можно считать известной.
 +
Значит, с помощью преобразования <tex> \mathbf Z_n^* = \Sigma^{-\frac{1}{2}} Y_n^* </tex> можно добиться независимости случайных ошибок.
 +
Тогда робастную оценку для <tex> \mathbf \theta </tex> можно получить из следующей задачи взвешенных наименьших квадратов:
 +
::<tex> \left\| {\mathbf W \left( \Sigma^{-\frac{1}{2}} Y_n^* - \Sigma^{-\frac{1}{2}} X \theta \right) } \right\|^2 \rightarrow \min_{\mathbf \theta} </tex>,
 +
где <tex> \mathbf W </tex> — диагональная матрица весов, соответствующих некоторой [[М-оценка|M-оценке]].
 +
 +
Решение записывается следующим образом:
 +
::<tex> {\mathbf \hat \theta} = \left( {\mathbf X^T \Sigma^{-\frac{1}{2}} W \Sigma^{-\frac{1}{2}} X} \right)^{-1} {\mathbf X^T \Sigma^{-\frac{1}{2}} W \Sigma^{-\frac{1}{2}} Y_n^* } </tex>.
 +
== Примечания ==
== Примечания ==

Версия 08:33, 24 октября 2011

Распределение генов по числу проб к ним на микрочипе Affymetrix Human Gene 1.0 ST.
Распределение генов по числу проб к ним на микрочипе Affymetrix Human Gene 1.0 ST.

Суммаризация — этап предобработки при анализе ДНК-микрочипов, в ходе которого интенсивности флуоресценции проб, соответствующих одному гену, обобщаются в оценку его экспрессии.

Для обеспечения устойчивости оценки уровня экспрессии к каждому гену на микрочипе имеется несколько проб; их последовательности комплементарны разным участкам последовательности их гена.

Содержание

Одиночная суммаризация

В данном классе методов оценки экспрессии вычисляются для всех микрочипов независимо друг от друга.

В комплексе методов предобработки MAS 5.0[1] для суммаризации используется взвешенное среднее Тьюки, вычисленное одношаговым методом. Усреднение применяется к логарифмам интенсивностей флуоресценции проб и выполняется независимо для каждого гена на каждом микрочипе.

Множественная суммаризация

К данному классу методов относятся такие, которые для получения оценки экспрессии используют несколько микрочипов.

Интенсивности флуоресценции проб к одному и тому же гену в логарифмической шкале, каждая линия — один микрочип.
Интенсивности флуоресценции проб к одному и тому же гену в логарифмической шкале, каждая линия — один микрочип.

Интенсивности флуоресценции разных проб к одному и тому же гену могут отличаться на порядки, причём отличия между ними имеют в основном систематический характер. В комплексе методов предобработки RMA[1] делается попытка учесть эти различия в рамках следующей модели:

Y_{ijn}=\mu_{in}+\alpha_{jn}+\varepsilon_{ijn}.

Здесь Y_{ijn} — предобработанная (с вычтенным фоном и нормализованная) логирифмированная интенсивность флуоресценции пробы j к гену n на микрочипе i, \mu_{in} — оценка экспрессии гена n на микрочипе i в логарифмической шкале, \alpha_{jn} — коэффициент аффинитивности j-й пробы n-му гену, \varepsilon_{ijn} — случайная ошибка с нулевым средним. Для однозначности определения параметров предполагается дополнительно \sum_j \alpha_j=0 для каждого гена.

В RMA значения коэффициентов оцениваются при помощи алгоритма median polish[1].

fRMA (Frozen Robust Multi-Array Analysis)

Рассматривается следующая модель уровня экспрессии[1]:

(1)
 Y_{ijkn} = \theta_{in} + \phi_{jn} + \gamma_{jkn} + \varepsilon_{ijkn}

Здесь используются следующие обозначения:

  • k — номер партии микрочипов  k \in 1, \dots, K . Два чипа относятся к одной партии, если эксперименты с ними были проведены в одной лаборатории в одно и то же время.
  • i — номер микрочипа  i \in 1, \dots, I_k .
  • n — номер набора проб  n \in 1, \dots, N . Также через n мы будем обозначать номер гена, соответствующего n-му набору проб.
  • j — номер пробы  i \in 1, \dots, J_n .
  • Y_{ijkn} — предобработанная (с вычтенным фоном и нормализованная) логарифмированная интенсивность пробы j из набора проб n микрочипа i из партии микрочипов k.
  • \theta_{in} — экспрессия гена n на i-м микрочипе.
  • \phi_{jn} — коэффициент сродства пробы j гену n.
  • \gamma_{jkn} — случайная ошибка, вызывающая различия между партиями проб.
  • \varepsilon_{ijkn} — случайная ошибка, вызывающая различия между пробами на чипах одной партии.

В данной модели предполагается, что пробы на разных чипах имеют одинаковую дисперсию случайной ошибки: \mathbb{D} \varepsilon_{ijkn} = \sigma_{jn}^2. Также делается предположение, что \gamma_{jkn} — это случайная величина, дисперсия которой не зависит от партии чипов: \mathbb{D} \gamma_{jkn} = \tau_{jn}^2.

Обучение модели

Для обучения необходимы данные с большого числа микрочипов.

Сначала ко всем микрочипам применяется метод квантильной нормализации, приводящий все данные к одному распределению. В дальнейшем будем называть это распределение «представительным».

Непосредственная настройка модели (1) при наличии выбросов в обучающей выборке крайне сложна, поэтому предлагается перейти к более простой задаче. Рассматривается упрощенная модель

 Y_{ijn} = \theta_{in} + \phi_{jn} + \varepsilon_{ijn} .

По обучающей выборке находятся робастные оценки параметров \hat \theta_{in} и  \hat \phi_{jn} для данной модели. Затем вычисляются остатки r_{ijkn} = Y_{ijkn} - \left( \hat \theta_{in} + \hat \phi_{jn} \right) , с помощью которых оцениваются дисперсии \sigma_{jn}^2 и \tau_{jn}^n:

 \hat \tau_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \left( \bar r_{.jkn} - \bar r_{.j.n} \right)^2;
 \hat \sigma_{jn}^2 = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} \left( r_{ijkn} - \bar r_{.jkn} \right)^2,

где \bar r_{.jkn} = \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn},\; \bar r_{.j.n} = \frac{1}{K} \sum_{k = 1}^{K} \frac{1}{I_k} \sum_{i = 1}^{I_k} r_{ijkn} .

Обработка новых чипов

Рассмотрим процесс обработки новых чипов. Сначала делается фоновая поправка всех чипов методом RMA-свертки, затем с помощью квантильной нормализации интенсивности новых чипов приводятся к представительному распределению, полученному на этапе обучения. Последним шагом является суммаризация, которая подробно описана ниже.

В первую очередь делается поправка интенсивностей проб для учета коэффициента сродства:

(2)
 Y_{ijln}^* = Y_{ijln} - \hat \phi_{jn} \approx \theta_{in} + \gamma_{jln} + \varepsilon_{ijln}

(здесь l — это индекс новой партии микрочипов).

Далее из скорректированных интенсивностей нужно получить робастную оценку для \theta. Это делается разными способами в зависимости от того, из скольких чипов состоит партия.

Один микрочип

В данном случае индексы i и l могут быть опущены опущены, так как обрабатывается один микрочип и одна партия.

Логарифмированная концентрация оценивается следующим образом:

 \hat \theta_n = \frac{\sum_{j = 1}^{J_n} \frac{w_{jn}}{v_{jn}} Y_{jn}^*}{\sum_{j = 1}^{J_n} \frac{w_{jn}}{v_{jn}}} ,

где  v_{jn} = \hat \tau_{jn}^2 + \hat \sigma_{jn}^2 — оценка дисперсии скорректированной интенсивности Y_{jn}^*, а  w_{jn} — веса, соответствующие некоторой M-оценке.

Данная оценка учитывает с низкими весами выбросы (так как им соответствуют маленькие w_{jn}) и пробы с большой дисперсией шума.

Партия микрочипов

В данном случае индекс l может быть опущен, так как обрабатывается одна партия микрочипов. Число чипов в новой партии будем обозначать через I

Введем следующие обозначения:

  •  {\mathbf X} = 1_{J_n \times 1} \otimes \mathbf{E}_{I \times I} — индикаторная матрица ( 1_{m \times n} — матрица из единиц размера  m \times n ;  {\mathbf E}_{n \times n} — единичная матрица размера  n \times n ;  \otimes произведение Кронекера).
  •  {\mathbf \theta} = \left( \theta_{1 n}, \dots, \theta_{I n} \right) — вектор экспрессий.
  •  {\mathbf Y_{jn}^*} = \left( Y_{ijn}^* \right)_{i = 1}^{I} \in \mathbb{R}^I — вектор интенсивностей пробы j набора n на всех чипах партии.
  •  {\mathbf Y_n^*} = \left( {\mathbf Y_{1,n}^*, \dots, Y_{J_n, n}^* } \right)^T  \in \mathbb{R}^{I J_n} — вектор интенсивностей всех проб к гену n на всех чипах партии.
  •  {\mathbf \delta} \in \mathbb{R}^{I J_n}  — вектор случайных ошибок, соответствующих интенсивностям из  {\mathbf Y_n^*} .

Тогда модель (2) можно записать в матричном виде:

 \mathbf Y_n^* = X \theta + \delta

Матрица ковариации вектора случайных ошибок  \mathbf \delta задается следующим образом:

 {\mathbf \delta}_{i_1 j_1, i_2 j_2} = cov \left( Y_{i_1 j_1 n}^*,\; Y_{i_2 j_2 n}^* \right) = \begin{cases} \tau_{jn}^2 + \sigma_{jn}^2, & \text{if } j_1 = j_2 = j, \; i_1 = i_2, \\ \tau_{jn}^2, & \text{if } j_1 = j_2 = j, \; i_1 \neq i_2, \\ 0, & \text{otherwise} \end{cases}

С учетом данного выражения ковариационную матрицу вектора  \mathbf \delta можно записать следующим образом:

 {\mathbf \Sigma} = diag \left( \tau_{1n}^2, \dots, \tau_{J_n, n}^2 \right) \otimes 1_{I \times I} + diag \left( \sigma_{1n}^2, \dots, \sigma_{J_n, n}^2 \right) \otimes {\mathbf E}_{I \times I}

Для параметров  \tau_{jn}^2 И  \sigma_{jn}^2 уже получены оценки, поэтому матрицу  \mathbf \Sigma можно считать известной. Значит, с помощью преобразования  \mathbf Z_n^* = \Sigma^{-\frac{1}{2}} Y_n^* можно добиться независимости случайных ошибок. Тогда робастную оценку для  \mathbf \theta можно получить из следующей задачи взвешенных наименьших квадратов:

 \left\| {\mathbf W \left( \Sigma^{-\frac{1}{2}} Y_n^* - \Sigma^{-\frac{1}{2}} X \theta \right) } \right\|^2 \rightarrow \min_{\mathbf \theta} ,

где  \mathbf W — диагональная матрица весов, соответствующих некоторой M-оценке.

Решение записывается следующим образом:

 {\mathbf \hat \theta} = \left( {\mathbf X^T \Sigma^{-\frac{1}{2}} W \Sigma^{-\frac{1}{2}} X} \right)^{-1} {\mathbf X^T \Sigma^{-\frac{1}{2}} W \Sigma^{-\frac{1}{2}} Y_n^* } .


Примечания

Личные инструменты