Машина опорных векторов

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Понятие оптимальной разделяющей гиперплоскости)
м
Строка 27: Строка 27:
== Литература ==
== Литература ==
-
# ''Вапник В. Н.'' Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
+
# {{Публикация:Вапник 1979 Восстановление зависимостей}}
 +
# {{Публикация:Hastie 2001 The Elements of Statistical Learning}}
== Ссылки ==
== Ссылки ==

Версия 21:52, 16 мая 2008

Машина опорных векторов — является одной из наиболее популярных методологий обучения по прецедентам, предложенной В. Н. Вапником и известной в англоязычной литературе под названием SVM (Support Vector Machine).

Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin). Случай линейной разделимости. Задача квадратичного программирования. Опорные векторы. Случай отсутствия линейной разделимости. Функции ядра (kernel functions), спрямляющее пространство, теорема Мерсера. Способы построения ядер. Примеры ядер. Сопоставление SVM и нейронной RBF-сети. Обучение SVM методом активных ограничений. SVM-регрессия.


Содержание

Машина опорных векторов в задачах классификации

Понятие оптимальной разделяющей гиперплоскости

Линейный классификатор

Линейно разделимая выборка

Линейно неразделимая выборка

Ядра и спрямляющие пространства

Наиболее распространенные ядра:

  • Полиномиальное: k(\mathbf{x},\mathbf{x}')=(\mathbf{x} \cdot \mathbf{x'})^d
  • Полиномиальное: k(\mathbf{x},\mathbf{x}')=(\mathbf{x} \cdot \mathbf{x'} + 1)^d
  • Радиальное: k(\mathbf{x},\mathbf{x}')=\exp(-\gamma \|\mathbf{x} - \mathbf{x'}\|^2), для \gamma > 0

Алгоритмы настройки

Машина опорных векторов в задачах регрессии

Программные реализации

Литература

  1. Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979. — 448 с.  (подробнее)
  2. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning, 2nd edition. — Springer, 2009. — 533 p.  (подробнее)

Ссылки

Личные инструменты