Графические модели (курс лекций)
Материал из MachineLearning.
(- ссылки на материалы прошлого года) |
м (оформление) |
||
Строка 3: | Строка 3: | ||
__NOTOC__ | __NOTOC__ | ||
- | Курс посвящен математическим методам обработки информации, основанных на использовании внутренних взаимосвязей в данных и их последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ социальных сетей, распознавание речи, машинное обучение. | + | {|border = "0" |
+ | |[[Изображение:Mrf.jpg|300px]] | ||
+ | | valign="top"|Курс посвящен математическим методам обработки информации, основанных на использовании внутренних взаимосвязей в данных и их последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ социальных сетей, распознавание речи, машинное обучение. До 2011 года курс читался как спецкурс [[Структурные методы анализа изображений и сигналов (курс лекций)/2011|«Структурные методы анализа изображений и сигналов»]]. | ||
+ | |} | ||
- | Лекторы: [[Участник:Dmitry Vetrov|Д.П. Ветров]], [[Участник:Kropotov| Д.А. Кропотов]]. | + | Лекторы: [[Участник:Dmitry Vetrov|Д.П. Ветров]], [[Участник:Kropotov|Д.А. Кропотов]]. |
Семинарист: [[Участник:Anton|А.А. Осокин]]. | Семинарист: [[Участник:Anton|А.А. Осокин]]. | ||
- | |||
- | |||
== Расписание занятий == | == Расписание занятий == | ||
- | В 2012 году курс читается в весеннем семестре | + | В 2012 году курс читается в весеннем семестре на факультете [[ВМиК]] МГУ по средам в ауд. 526Б, начало в 16-50. |
{| class="standard" | {| class="standard" | ||
Строка 58: | Строка 59: | ||
== Программа курса == | == Программа курса == | ||
- | === Введение в курс и понятие графических моделей. === | + | === Введение в курс и понятие графических моделей. Байесовские и марковские сети. === |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | Обзор курса. Задачи анализа структурированных данных. Представление зависимостей между объектами в виде графов. Байесовские сети. Элементарные способы работы с байесовскими сетями. Марковские сети. Потенциалы на кликах. Примеры использования марковских сетей для анализа изображений. | |
- | + | ''Ликбез: независимость случайных событий. Условная вероятность. Условная независимость.'' | |
[http://en.wikipedia.org/wiki/Graphical_models Статья в Википедии по графическим моделям] | [http://en.wikipedia.org/wiki/Graphical_models Статья в Википедии по графическим моделям] |
Версия 15:35, 5 февраля 2012
Внимание! Страница курса находится в процессе формирования. |
Курс посвящен математическим методам обработки информации, основанных на использовании внутренних взаимосвязей в данных и их последующем анализе. Эти методы широко используются при решении задач из разных прикладных областей, включая обработку изображений и видео, анализ социальных сетей, распознавание речи, машинное обучение. До 2011 года курс читался как спецкурс «Структурные методы анализа изображений и сигналов». |
Лекторы: Д.П. Ветров, Д.А. Кропотов.
Семинарист: А.А. Осокин.
Расписание занятий
В 2012 году курс читается в весеннем семестре на факультете ВМиК МГУ по средам в ауд. 526Б, начало в 16-50.
Дата | Занятие |
---|---|
8 февраля 2012 | Лекция 1 «Графические модели: Байесовские и марковские сети» |
15 февраля 2012 | Лекция 2 «Точные методы вывода в ациклических графических моделях. Алгоритм Belief Propagation» |
22 февраля 2012 | Семинар 1. |
29 февраля 2012 | Лекция 3 «Скрытые марковские модели. Алгоритм сегментации сигнала, обучение с учителем» |
7 марта 2012 | Лекция 4 «Задача фильтрации многомерных сигналов. Линейные динамические системы. Фильтр Калмана» |
14 марта 2012 | Лекция 5 «ЕМ-алгоритм. Обучение скрытых марковских моделей и линейных динамических систем.» |
21 марта 2012 | Лекция 6 «Алгоритмы на основе разрезов графов, -расширение.» |
28 марта 2012 | Лекция 7 «Приближенные методы вывода в циклических графических моделях. Алгоритм Tree-ReWeighted Message Passing (TRW)» |
4 апреля 2012 | Семинар 2. |
11 апреля 2012 | Лекция 8 «Методы Монте Карло по схеме марковских цепей» |
18 апреля 2012 | Лекция 9 «Структурный метод опорных векторов» |
25 апреля 2012 | Семинар 3. |
2 мая 2012 | |
16 мая 2012 | Лекция 10 «Вариационный вывод» |
Практические задания
Задание 1. Скрытые марковские модели и линейные динамические системы.
Задание 2. TRW и α-расширение.
Задание 3. Структурное обучение.
Программа курса
Введение в курс и понятие графических моделей. Байесовские и марковские сети.
Обзор курса. Задачи анализа структурированных данных. Представление зависимостей между объектами в виде графов. Байесовские сети. Элементарные способы работы с байесовскими сетями. Марковские сети. Потенциалы на кликах. Примеры использования марковских сетей для анализа изображений.
Ликбез: независимость случайных событий. Условная вероятность. Условная независимость.
Статья в Википедии по графическим моделям
Точные методы вывода в ациклических графических моделях: Алгоритм Belief Propagation.
Поиск наиболее вероятной конфигурации ацикличной марковской сети с помощью алгоритма Belief Propagation (динамическое программирование). Интерфейс передачи сообщений. Подсчет мин-маргиналов. Поиск маргинальных распределений для графических моделей в форме дерева. Использование произвольных полукольцевых операций в графических моделях.
Статья в Википедии про алгоритм Belief Propagation
Скрытые марковские модели (СММ). Алгоритм сегментации сигнала.
Примеры задач сегментации сигналов. Обучение СММ с учителем. Поиск наиболее вероятной последовательности состояний. ЕМ-алгоритм и его использование в анализе графических моделей.
Обучение СММ без учителя
Алгоритм Баума-Уэлша для подсчета условного распределения скрытой переменной в отдельной точке. ЕМ-алгоритм для обучения СММ без учителя. Особенности численной реализации на ЭВМ. Модификации СММ (СММ высших порядков, факториальные СММ, многопоточные СММ, СММ ввода-вывода). Примеры использования СММ.
Методы фильтрации данных
Линейные динамические системы, фильтр Калмана. Настройка параметров фильтра Калмана. Уравнения Рауса-Тунга-Штрибеля. Расширенный фильтр Калмана, пример использования.
Приближенные методы вывода в графических моделях: Tree-ReWeighted Message Passing (TRW).
ЛП-релаксация задачи байесовского вывода. Двойственное разложение. Независимость алгоритма TRW от способа разбиений на деревья. Свойства алгоритма TRW для субмодулярной энергии.
Алгоритмы на основе разрезов графов
Энергетическая формулировка задач компьютерного зрения. Разрезы графов, алгоритмы нахождения максимального потока. Интерактивная сегментация изображений. Энергия, которую можно минимизировать с помощью разрезов графов. Приближенная минимизация энергии с помощью алгоритма альфа-расширения.
Методы настройки марковских случайных полей. Структурный метод опорных векторов.
Методы Монте Карло по схеме марковских цепей
Теоретические свойства марковских цепей: однородной, эргодичность и инвариантные распределения. Схема Метрополиса-Хастингса. Схема Гиббса. Примеры применения для дискретных марковских сетей. Фильтр частиц.
Литература
- Памятка по теории вероятностей
- Bishop C.M. Pattern Recognition and Machine Learning. Springer, 2006.
- Mackay D.J.C. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.
- Jordan M.I. (Ed.) Learning in graphical models. Cambridge MA: MIT Press, 1999
- Cowell R.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. Probabilistic networks and expert systems. Berlin: Springer, 1999.
Страницы курса прошлых лет
См. также
Курс «Байесовские методы машинного обучения»