Участник:LyubovLeonteva
Материал из MachineLearning.
LyubovLeonteva (Обсуждение | вклад)
(Новая: '''МФТИ, ФУПМ''' Кафедра '''"Интеллектуальные системы"''' Направление '''"Интеллектуальный анализ данных"''...)
К следующему изменению →
Версия 15:19, 29 мая 2012
МФТИ, ФУПМ
Кафедра "Интеллектуальные системы"
Направление "Интеллектуальный анализ данных"
liubov.sanduleanu@gmail.com
Отчет о научно-исследовательской работе
ПУБЛИКАЦИИ
Название
Многомерная гусеница, выбор длины и числа компонент
Аннотация
В работе описывается метод гусеницы (SSA) и его применение для прогнозирования временных рядов. Алгоритм основан на выделении из изучаемого временного ряда некоторого набора его главных компонент и последующего построения прогноза по выбранному набору. Исследуется зависимость точности прогноза от выбора длины гусеницы и числа ее компонент. В вычислительном эксперименте приводятся результаты работы алгоритма на периодических рядах с разным рисунком внутри периода, на рядах с нарушением периодичности, а так же на реальных рядах почасовой температуры в Москве.
Ключевые слова: прогнозирование, singular spectrum analysis, сингулярное разложение.
Публикации
Л.Н.Леонтьева Многомерная гусеница, выбор длины и числа компонент // Машинное обучение и анализ данных. — 2011. — № 1. — С. 2-10. — ISSN 2223-3792(опубликовано).
Название
Выбор моделей прогнозирования цен на электроэнергии
Аннотация
Исследуется проблема оптимальной сложности модели в связи с ее точностью и устойчивостью. Задача состоит в нахождении наиболее информативного набора признаков в условиях их высокой мультиколлинеарности. Для выбора оптимальной модели используется модифицированный алгоритм шаговой регрессии, являющийся одним из алгоритмов добавления и удаления признаков. В работе предложен метод поиска оптимальной модели прогнозирования цен на электроэнергию. В вычислительном эксперименте приведены результаты работы алгоритмов на временных рядах почасовых цен на электроэнергию.
Ключевые слова: отбор признаков, мультиколлинеарность, шаговая регрессия, метод Белсли, прогнозирование временных рядов.
Публикации
Л.Н.Леонтьева Выбор моделей прогнозирования цен на электроэнергии // Машинное обучение и анализ данных. — 2011. — № 2. — С. 129-139. — ISSN 2223-3792(опубликовано).
Название
Выбор признаков в авторегрессионных задачах прогнозирования
Аннотация
Исследуется проблема выбора модели оптимальной сложноcти при авторегрессионном прогнозировании. Задача состоит в отыскании наименне обусловленного набора признаков, доставляющего при этом заданное значение функции ошибки. Для выбора этого набора используется модифицированный алгоритм последовательного добавления и удаления признаков. В работе предложен метод поиска оптимальной модели прогнозирования временных рядов. В вычислительном эксперименте приведено сравнение прогнозов рядов почасовых цен на электроэнергию.
Ключевые слова: отбор признаков, мультиколлинеарность, шаговая регрессия, метод Белсли, прогнозирование временных рядов.
Публикации
Л.Н.Сандуляну, В.В.Стрижов Выбор признаков в авторегрессионных задачах прогнозирования// Информационные технологии. — 2012. — № 6. — ISSN 1684-6400(принято в печать).
Название
Последовательный выбор признаков при восстановлении регрессии
Аннотация
Исследуется проблема оптимальной сложности модели в связи с ее точностью и устойчивостью. Задача состоит в нахождении наиболее информативного набора признаков в условиях их высокой мультиколлинеарности. Для выбора оптимальной модели используется модифицированный алгоритм шаговой регрессии, являющийся одним из алгоритмов добавления и удаления признаков. Для описания работы пошагового алгоритма предложена модель $n$-мерного куба. Проанализированы величины матожидания и дисперсии функции ошибки.
Ключевые слова: отбор признаков, мультиколлинеарность, шаговая регрессия, метод Белсли, прогнозирование временных рядов.
Публикации
Л.Н.Леонтьева Последовательный выбор признаков при восстановлении регрессии // Машинное обучение и анализ данных. — 2012. — № 3. — С. 63-74. — ISSN 2223-3792(опубликовано).
ГРАНТЫ
«Выбор признаков в авторегрессионных задачах прогнозирования», ПГАС