Участник:Kropotov/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 62: Строка 62:
'''Вариант 2'''
'''Вариант 2'''
-
# Рассматривается задача классификации объектов на два класса по одному признаку. Предполагается, что значение признака $x$ для объектов из двух классов $K_1,K_2$ распределено по лапласовскому закону
+
1. Рассматривается задача классификации объектов на два класса по одному признаку. Предполагается, что значение признака $x$ для объектов из двух классов $K_1,K_2$ распределено по лапласовскому закону
$$ p(x|K_j) = \frac{\alpha_j}{2}\exp(-\alpha_j|x-\mu_j|),\ j=1,2, $$
$$ p(x|K_j) = \frac{\alpha_j}{2}\exp(-\alpha_j|x-\mu_j|),\ j=1,2, $$
с параметрами $\mu_1 = -2,\alpha_1 = 4,\mu_2 = 2,\alpha_2 = 4$. Требуется найти области значений признака $x$, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.8 и 0.2.
с параметрами $\mu_1 = -2,\alpha_1 = 4,\mu_2 = 2,\alpha_2 = 4$. Требуется найти области значений признака $x$, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.8 и 0.2.
-
# Имеется задача распознавания с 4-мя классами и одним признаком. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции:
+
 
 +
2. Имеется задача распознавания с 4-мя классами и одним признаком. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции:
\begin{align*}
\begin{align*}
&f_1(x) = -1.8-0.1x,&\quad &f_3(x) = 2.2-3.6x,\\
&f_1(x) = -1.8-0.1x,&\quad &f_3(x) = 2.2-3.6x,\\
Строка 71: Строка 72:
\end{align*}
\end{align*}
Требуется изобразить на графике области, соответствующие отнесению к каждому из четырех классов.
Требуется изобразить на графике области, соответствующие отнесению к каждому из четырех классов.
-
# Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков $x_1$ и $x_2$. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов:
+
 
 +
3. Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков $x_1$ и $x_2$. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов:
\begin{center}
\begin{center}
\begin{tabular}{ccc}
\begin{tabular}{ccc}
Строка 85: Строка 87:
\end{tabular}
\end{tabular}
\end{center}
\end{center}
-
# Банком тестируется два метода идентификации недобросовестных заёмщиков. Известно, что средний доход от одного добросовестного заёмщика составляет 3 единиц, средняя величина потерь от одного недобросовестного заёмщика~--- 9 единиц. Известно, что доля недобросовестных заёмщиков 30\%. Известно несколько точек графика ROC–кривой для двух распознающих операторов. Требуется установить на основании этой информации целесообразность использования банком одной из технологий распознавания, оценить максимальный дополнительный доход на одного заёмщика.
+
4. Банком тестируется два метода идентификации недобросовестных заёмщиков. Известно, что средний доход от одного добросовестного заёмщика составляет 3 единиц, средняя величина потерь от одного недобросовестного заёмщика~--- 9 единиц. Известно, что доля недобросовестных заёмщиков 30\%. Известно несколько точек графика ROC–кривой для двух распознающих операторов. Требуется установить на основании этой информации целесообразность использования банком одной из технологий распознавания, оценить максимальный дополнительный доход на одного заёмщика.
\begin{center}
\begin{center}
\begin{tabular}{cc}
\begin{tabular}{cc}
Строка 103: Строка 105:
\end{tabular}
\end{tabular}
\end{center}
\end{center}
-
# Задана таблица совместных значений прогнозируемой переменной $Y$ и объясняющей переменной $X$. Требуется вычислить ковариацию между $Y$ и $X$, коэффициент корреляции между $Y$ и $X$, коэффициенты одномерной линейной регрессии.
+
 
 +
5. Задана таблица совместных значений прогнозируемой переменной $Y$ и объясняющей переменной $X$. Требуется вычислить ковариацию между $Y$ и $X$, коэффициент корреляции между $Y$ и $X$, коэффициенты одномерной линейной регрессии.
\begin{center}
\begin{center}
\begin{tabular}{c|ccccc}
\begin{tabular}{c|ccccc}
Строка 110: Строка 113:
\end{tabular}
\end{tabular}
\end{center}
\end{center}
-
# Заданы таблицы значений бинарных признаков для классов $K_1$ и $K_2$. Требуется найти \textbf{все} тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.
+
 
-
\begin{center}
+
6. Заданы таблицы значений бинарных признаков для классов <tex>K_1</tex> и <tex>K_2</tex>. Требуется найти '''все''' тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.
-
\begin{tabular}{ccc}
+
 
-
Класс 1 & & Класс 2 \\
+
{|align="center"
-
\begin{tabular}{cccc}
+
! colspan="4"|Класс 1 !! &nbsp;&nbsp; !! colspan="4"|Класс 2
-
X1 & X2 & X3 & X4 \\
+
|-
-
0 & 0 & 1 & 0\\
+
| X1 || X2 || X3 || X4 || || X1 || X2 || X3 || X4
-
0 & 0 & 0 & 0\\
+
|-
-
0 & 0 & 1 & 1\\
+
| 0 || 0 || 1 || 0 || || 0 || 1 || 1 || 0
-
0 & 0 & 1 & 0
+
|-
-
\end{tabular} & \qquad\qquad &
+
| 0 || 0 || 0 || 0 || || 1 || 1 || 1 || 1
-
\begin{tabular}{cccc}
+
|-
-
X1 & X2 & X3 & X4 \\
+
| 0 || 0 || 1 || 1 || || 1 || 0 || 1 || 0
-
0 & 1 & 1 & 0 \\
+
|-
-
1 & 1 & 1 & 1 \\
+
| 0 || 0 || 1 || 0 || || 1 || 0 || 1 || 0
-
1 & 0 & 1 & 0 \\
+
|-
-
1 & 0 & 1 & 0
+
|}
-
\end{tabular}
+
-
\end{tabular}
+
-
\end{center}
+
-
\end{enumerate}
+
'''Вариант 3'''
'''Вариант 3'''
-
# Рассматривается задача классификации объектов на два класса по одному \textit{дискретному} признаку. Предполагается, что значение признака $x$ для объектов из первого класса имеет равномерное дискретное распределение на интервале $[a,b]$, а для второго класса~--- по геометрическому закону:
+
1. Рассматривается задача классификации объектов на два класса по одному \textit{дискретному} признаку. Предполагается, что значение признака $x$ для объектов из первого класса имеет равномерное дискретное распределение на интервале $[a,b]$, а для второго класса~--- по геометрическому закону:
$$ \mathbb{P}(x=k|q) = q^k(1-q),\ k=0,1,2,\dots $$
$$ \mathbb{P}(x=k|q) = q^k(1-q),\ k=0,1,2,\dots $$
Пусть $a=0,b=4,q=0.9$. Требуется найти области значений признака $x$, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.7 и 0.3.
Пусть $a=0,b=4,q=0.9$. Требуется найти области значений признака $x$, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.7 и 0.3.
-
# Имеется задача распознавания с 3-мя классами и 2-мя признаками. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции:
+
 
 +
2. Имеется задача распознавания с 3-мя классами и 2-мя признаками. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции:
\begin{align*}
\begin{align*}
&f_1(x_1,x_2) = -5+x_1+3x_2,\\
&f_1(x_1,x_2) = -5+x_1+3x_2,\\
Строка 144: Строка 144:
\end{align*}
\end{align*}
Требуется изобразить на двумерной диаграмме области, соответствующие отнесению к классам 1, 2 и 3.
Требуется изобразить на двумерной диаграмме области, соответствующие отнесению к классам 1, 2 и 3.
-
# Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков $x_1$ и $x_2$. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов:
+
 
 +
3. Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков $x_1$ и $x_2$. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов:
\begin{center}
\begin{center}
\begin{tabular}{ccc}
\begin{tabular}{ccc}
Строка 158: Строка 159:
\end{tabular}
\end{tabular}
\end{center}
\end{center}
-
# При проведении выборов на ряде избирательных участков производятся фальсификации результатов голосования. Посылка наблюдателя на такой участок предотвращает фальсификации. Пусть известно несколько точек ROC-кривой для метода идентификации <<грязных>> участков. Требуется определить оптимальную стратегию распределения наблюдателей по участкам и максимальный выигрыш относительно стратегии равномерного распределения по участкам, если всего участков 3000, наблюдателей~--- 600 и доля <<грязных>> участков~--- 20\%. При этом под оптимальностью понимается максимизация количества честных участков.
+
 
 +
4. При проведении выборов на ряде избирательных участков производятся фальсификации результатов голосования. Посылка наблюдателя на такой участок предотвращает фальсификации. Пусть известно несколько точек ROC-кривой для метода идентификации <<грязных>> участков. Требуется определить оптимальную стратегию распределения наблюдателей по участкам и максимальный выигрыш относительно стратегии равномерного распределения по участкам, если всего участков 3000, наблюдателей~--- 600 и доля <<грязных>> участков~--- 20\%. При этом под оптимальностью понимается максимизация количества честных участков.
\begin{center}
\begin{center}
\begin{tabular}{cc}
\begin{tabular}{cc}
Строка 168: Строка 170:
\end{tabular}
\end{tabular}
\end{center}
\end{center}
-
# Задана таблица совместных значений прогнозируемой переменной $Y$ и объясняющей переменной $X$. Требуется вычислить ковариацию между $Y$ и $X$, коэффициент корреляции между $Y$ и $X$, коэффициенты одномерной линейной регрессии.
+
 
 +
5. Задана таблица совместных значений прогнозируемой переменной $Y$ и объясняющей переменной $X$. Требуется вычислить ковариацию между $Y$ и $X$, коэффициент корреляции между $Y$ и $X$, коэффициенты одномерной линейной регрессии.
\begin{center}
\begin{center}
\begin{tabular}{c|ccccc}
\begin{tabular}{c|ccccc}
Строка 175: Строка 178:
\end{tabular}
\end{tabular}
\end{center}
\end{center}
-
# Заданы таблицы значений бинарных признаков для классов $K_1$ и $K_2$. Требуется найти \textbf{все} тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.
 
-
\begin{center}
 
-
\begin{tabular}{ccc}
 
-
Класс 1 & & Класс 2 \\
 
-
\begin{tabular}{cccc}
 
-
X1 & X2 & X3 & X4 \\
 
-
1 & 0 & 1 & 0\\
 
-
1 & 0 & 0 & 0\\
 
-
1 & 0 & 0 & 0\\
 
-
0 & 0 & 1 & 0
 
-
\end{tabular} & \qquad\qquad &
 
-
\begin{tabular}{cccc}
 
-
X1 & X2 & X3 & X4 \\
 
-
0 & 0 & 0 & 1 \\
 
-
1 & 0 & 0 & 1 \\
 
-
1 & 0 & 0 & 1 \\
 
-
1 & 0 & 1 & 1
 
-
\end{tabular}
 
-
\end{tabular}
 
-
\end{center}
 
-
 
 +
6. Заданы таблицы значений бинарных признаков для классов $K_1$ и $K_2$. Требуется найти \textbf{все} тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.
 +
{|align="center"
 +
! colspan="4"|Класс 1 !! &nbsp;&nbsp; !! colspan="4"|Класс 2
 +
|-
 +
| X1 || X2 || X3 || X4 || || X1 || X2 || X3 || X4
 +
|-
 +
| 1 || 0 || 1 || 0 || || 0 || 0 || 0 || 1
 +
|-
 +
| 1 || 0 || 0 || 0 || || 1 || 0 || 0 || 1
 +
|-
 +
| 1 || 0 || 0 || 0 || || 1 || 0 || 0 || 1
 +
|-
 +
| 0 || 0 || 1 || 0 || || 1 || 0 || 1 || 1
 +
|-
 +
|}

Версия 14:03, 9 января 2013

Вариант 1


1. Рассматривается задача классификации объектов на два класса по одному неотрицательному признаку. Предполагается, что значение признака x для объектов из классов K_1,K_2 распределено по закону Рэлея:

 p(x|K_j) = \beta_j x\exp\left(-\frac{\beta_j}{2}x^2\right),\ \mathbf{x\ge 0},j=1,2.
Пусть \beta_1=7.3,\beta_2=5.1. Требуется найти области значений признака x, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.1 и 0.9.

2. Имеется задача распознавания с 3-мя классами и 2-мя признаками. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции:

\begin{align*}&f_1(x_1,x_2) = 5+5x_1-4x_2,\\	&f_2(x_1,x_2) = -4-x_1-x_2,\\	&f_3(x_1,x_2) = 5+4x_1+5x_2.\end{align*}

Требуется изобразить на двумерной диаграмме области, соответствующие отнесению к классам 1, 2 и 3.

3. Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков x_1 и x_2. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов:

Класс 1   Класс 2
x_1 2.7 3.4 4.1 x_1 -4.5 -3.3 -3.3
x_2 4.2 3.1 2.9 x_2 -1.2 -1.5 -0.6


4. При проведении выборов на ряде избирательных участков производятся фальсификации результатов голосования. Посылка наблюдателя на такой участок предотвращает фальсификации. Пусть известно несколько точек ROC-кривой для метода идентификации <<грязных>> участков. Требуется определить оптимальную стратегию распределения наблюдателей по участкам и максимальный выигрыш относительно стратегии равномерного распределения по участкам, если всего участков 1000, наблюдателей~--- 100 и доля <<грязных>> участков~--- 20\%. При этом под оптимальностью понимается максимизация количества честных участков.

Чувствительность Ложная тревога
0.52 0.11
0.70 0.19
0.99 0.32

5. Задана таблица совместных значений прогнозируемой переменной Y и объясняющей переменной X. Требуется вычислить ковариацию между Y и X, коэффициент корреляции между Y и X, коэффициенты одномерной линейной регрессии.

\begin{tabular}{c|ccccc}	Y & 1.9 & 2.4 & 3.0 & 6.6 & 9.6 \\ X & 8.3 & 7.5 & 5.8 & -2.0 & -2.6 \end{tabular}

6. Заданы таблицы значений бинарных признаков для классов K_1 и K_2. Требуется найти все тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.

Класс 1    Класс 2
X1 X2 X3 X4 X1 X2 X3 X4
0 1 1 1 1 1 0 0
0 0 1 0 1 1 0 1
1 0 1 1 1 0 0 0
1 1 1 0 0 0 1 1

Вариант 2

1. Рассматривается задача классификации объектов на два класса по одному признаку. Предполагается, что значение признака $x$ для объектов из двух классов $K_1,K_2$ распределено по лапласовскому закону $$ p(x|K_j) = \frac{\alpha_j}{2}\exp(-\alpha_j|x-\mu_j|),\ j=1,2, $$ с параметрами $\mu_1 = -2,\alpha_1 = 4,\mu_2 = 2,\alpha_2 = 4$. Требуется найти области значений признака $x$, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.8 и 0.2.

2. Имеется задача распознавания с 4-мя классами и одним признаком. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции: \begin{align*} &f_1(x) = -1.8-0.1x,&\quad &f_3(x) = 2.2-3.6x,\\ &f_2(x) = -1.2-3.8x,&\quad &f_4(x) = -3.1+4.5x. \end{align*} Требуется изобразить на графике области, соответствующие отнесению к каждому из четырех классов.

3. Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков $x_1$ и $x_2$. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов: \begin{center} \begin{tabular}{ccc} Класс 1 & & Класс 2 \\ \begin{tabular}{c|ccc} $x_1$ & 2.7 & 2.5 & 1.1 \\ $x_2$ & 1.5 & 1.2 & 2.7 \end{tabular} & \qquad\qquad & \begin{tabular}{c|cccc} $x_1$ & -3.2 & -3.7 & -4.2 & -4.1 \\ $x_2$ & -4.9 & -1.2 & -3.6 & -5.1 \end{tabular} \end{tabular} \end{center} 4. Банком тестируется два метода идентификации недобросовестных заёмщиков. Известно, что средний доход от одного добросовестного заёмщика составляет 3 единиц, средняя величина потерь от одного недобросовестного заёмщика~--- 9 единиц. Известно, что доля недобросовестных заёмщиков 30\%. Известно несколько точек графика ROC–кривой для двух распознающих операторов. Требуется установить на основании этой информации целесообразность использования банком одной из технологий распознавания, оценить максимальный дополнительный доход на одного заёмщика. \begin{center} \begin{tabular}{cc} \begin{tabular}{cc} Чувствительность & Ложная тревога \\ \hline 0.58 & 0.11 \\ 0.67 & 0.19 \\ 0.93 & 0.19 \\ \end{tabular} & \begin{tabular}{cc} Чувствительность & Ложная тревога \\ \hline 0.53 & 0.04 \\ 0.90 & 0.27 \\ 0.92 & 0.33 \\ \end{tabular} \end{tabular} \end{center}

5. Задана таблица совместных значений прогнозируемой переменной $Y$ и объясняющей переменной $X$. Требуется вычислить ковариацию между $Y$ и $X$, коэффициент корреляции между $Y$ и $X$, коэффициенты одномерной линейной регрессии. \begin{center} \begin{tabular}{c|ccccc} $Y$ & 0.8 & 1.9 & 7.2 & 8.5 & 9.6 \\ $X$ & -1.9 & 4.3 & 5.4 & 6.9 & 8.3 \end{tabular} \end{center}

6. Заданы таблицы значений бинарных признаков для классов K_1 и K_2. Требуется найти все тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.

Класс 1    Класс 2
X1 X2 X3 X4 X1 X2 X3 X4
0 0 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 0 1 1 1 0 1 0
0 0 1 0 1 0 1 0

Вариант 3

1. Рассматривается задача классификации объектов на два класса по одному \textit{дискретному} признаку. Предполагается, что значение признака $x$ для объектов из первого класса имеет равномерное дискретное распределение на интервале $[a,b]$, а для второго класса~--- по геометрическому закону: $$ \mathbb{P}(x=k|q) = q^k(1-q),\ k=0,1,2,\dots $$ Пусть $a=0,b=4,q=0.9$. Требуется найти области значений признака $x$, соответствующие отнесению объектов в каждый из двух классов байесовским классификатором, если априорные вероятности классов равны, соответственно, 0.7 и 0.3.

2. Имеется задача распознавания с 3-мя классами и 2-мя признаками. Предполагается, что с использованием метода <<Линейная машина>> для каждого класса найдены следующие линейные разделяющие функции: \begin{align*} &f_1(x_1,x_2) = -5+x_1+3x_2,\\ &f_2(x_1,x_2) = -2+4x_1+5x_2,\\ &f_3(x_1,x_2) = 5+4x_1+2x_2. \end{align*} Требуется изобразить на двумерной диаграмме области, соответствующие отнесению к классам 1, 2 и 3.

3. Предполагается, что линейный дискриминант Фишера используется для распознавания объектов из двух классов по паре признаков $x_1$ и $x_2$. Требуется вычислить вектор, задающий направление перпендикуляра к прямой, разделяющей объекты двух классов: \begin{center} \begin{tabular}{ccc} Класс 1 & & Класс 2 \\ \begin{tabular}{c|cccc} $x_1$ & 1.9 & 0.8 & 1.3 & 1.6 \\ $x_2$ & 3.3 & -0.1 & 1.8 & 1.8 \end{tabular} & \qquad\qquad & \begin{tabular}{c|ccc} $x_1$ & -1.9 & -1.6 & -0.4 \\ $x_2$ & -3.0 & -3.4 & -1.1 \end{tabular} \end{tabular} \end{center}

4. При проведении выборов на ряде избирательных участков производятся фальсификации результатов голосования. Посылка наблюдателя на такой участок предотвращает фальсификации. Пусть известно несколько точек ROC-кривой для метода идентификации <<грязных>> участков. Требуется определить оптимальную стратегию распределения наблюдателей по участкам и максимальный выигрыш относительно стратегии равномерного распределения по участкам, если всего участков 3000, наблюдателей~--- 600 и доля <<грязных>> участков~--- 20\%. При этом под оптимальностью понимается максимизация количества честных участков. \begin{center} \begin{tabular}{cc} Чувствительность & Ложная тревога \\ \hline 0.54 & 0.01 \\ 0.68 & 0.33 \\ 0.71 & 0.35 \\ \end{tabular} \end{center}

5. Задана таблица совместных значений прогнозируемой переменной $Y$ и объясняющей переменной $X$. Требуется вычислить ковариацию между $Y$ и $X$, коэффициент корреляции между $Y$ и $X$, коэффициенты одномерной линейной регрессии. \begin{center} \begin{tabular}{c|ccccc} $Y$ & 9.2 & 8.6 & 8.1 & 5.9 & 4.7 \\ $X$ & 7.9 & 5.9 & 3.2 & 1.6 & -0.1 \end{tabular} \end{center}

6. Заданы таблицы значений бинарных признаков для классов $K_1$ и $K_2$. Требуется найти \textbf{все} тупиковые тесты минимальной длины, а также указать для каждого класса по одному представительному набору, который не совпадает по признакам с тупиковым тестом.

Класс 1    Класс 2
X1 X2 X3 X4 X1 X2 X3 X4
1 0 1 0 0 0 0 1
1 0 0 0 1 0 0 1
1 0 0 0 1 0 0 1
0 0 1 0 1 0 1 1


Личные инструменты