Графические модели (курс лекций)/2013/Задание 3
Материал из MachineLearning.
(→Оформление задания) |
(→Оформление задания) |
||
Строка 297: | Строка 297: | ||
| | | | ||
{| | {| | ||
- | |T — номера состояний в каждый момент времени, вектор длины N. | + | |T — номера состояний в каждый момент времени, вектор длины N-M. |
|- | |- | ||
|} | |} |
Версия 01:06, 31 марта 2013
Формулировка задания находится в стадии подготовки. Убедительная просьба не приступать к выполнению задания до тех пор, пока это предупреждение не будет удалено. |
Начало выполнения задания: 18 марта 2013 г.;
Срок сдачи: 7 апреля 2013 г. (воскресенье), 23:59.
Среда для выполнения задания — MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
Содержание |
Модель авторегрессии
Случайный процесс с дискретным временем , называется авторегрессией первого порядка, если
- .
Здесь — параметр сдвига, — авторегрессионная матрица, — матрица ковариации шума, шумовые компоненты предполагаются независимыми. Процесс авторегрессии является стационарным, если все собственные значения матрицы (включая комплексные) по модулю меньше единицы. Мат.ожидание стационарного процесса авторегрессии определяется как
- ,
где — единичная матрица размера .
В терминах графических моделей авторегрессия первого порядка представляет собой байесовскую сеть с графом вида цепочка (см. рис.), где совместное распределение задается как
- ,
а — начальная предыстория.
Авторегрессия M-го порядка задается как
- .
Здесь шумовые компоненты по-прежнему предполагаются независимыми. Очевидно, что авторегрессия M-го порядка может быть сведена к авторегрессии первого порядка как
Поэтому авторегрессия M-го порядка является стационарной, если все собственные значения матрицы по модулю меньше единицы. Мат.ожидание стационарной регрессии M-го порядка определяется как
- .
В дальнейшем для удобства набор матриц будем обозначать через .
В терминах графических моделей авторегрессия M-го порядка представляет собой байесовскую сеть с графом, показанном на рис. справа, где совместное распределение задается как
- ,
а — начальная предыстория.
Одним из способов определения адекватности моделирования данных с помощью модели авторегрессии является исследование остатков
- ,
где — оценки параметров авторегрессии (например, оценки максимального правдоподобия). Для успешного объяснения данных с помощью авторегрессии необходимо, чтобы остатки не были коррелированы по времени. Другими словами, выборочная автокорреляционная функция
должна лежать в интервале для всех . Здесь через обозначена -квантиль одномерного нормального распределения. Для уровня значимости соответствующая квантиль равна 1.96.
Авторегрессионная скрытая марковская модель
Авторегрессионная скрытая марковская модель M-го порядка — это байесовская сеть, граф которой показан на рис. справа, а совместное распределение задается как
- .
Здесь — скрытые дискретные состояния, — непрерывные наблюдаемые переменные. Априорное распределение задается вектором , причем все и . Распределение задается матрицей перехода размера , где в -ой позиции стоит вероятность перехода из состояния в состояние . Все элементы этой матрицы неотрицательны, а сумма элементов по каждой строке равна единице. Модель генерации данных соответствует модели авторегрессии, в которой параметры зависят от текущего состояния . Таким образом,
- .
В результате полный набор параметров модели состоит из . Глубина авторегрессии , количество скрытых состояний , а также начальная предыстория задаются пользователем.
Формулировка задания
- Для модели авторегрессии M-го порядка:
- Вывести формулы для оценки параметров модели по наблюдениям с помощью метода максимального правдоподобия;
- Реализовать процедуру генерации сигнала из модели авторегрессии;
- Реализовать процедуру оценки параметров по методу максимального правдоподобия;
- Провести следующие эксперименты с авторегрессией M-го порядка:
- Сгенерировать данные из модели авторегрессии, а затем восстановить параметры по методу максимального правдоподобия. Как ведут себя значение правдоподобия, авторегрессионные остатки и восстановленные параметры при глубине авторегрессии меньше истинного значения, равного истинному значению и больше истинного значения? Какой объем данных необходим для адекватного восстановления параметров модели?
- Сгенерировать данные из модели случайного процесса, отличного от авторегрессии. К чему приводит попытка объяснения таких данных с помощью авторегрессии?
- Для авторегрессионной скрытой марковской модели:
- Вывести формулы ЕМ-алгоритма для оценки параметров модели , при этом предусмотреть ситуации, когда часть параметров задается пользователем;
- Реализовать процедуру генерации сигнала из модели;
- Реализовать процедуру оценки параметров модели с помощью EM-алгоритма;
- Реализовать процедуру оценки скрытых состояний по наблюдаемым данным и параметрам модели с помощью алгоритма Витерби;
- Провести следующие эксперименты с авторегрессионной скрытой марковской моделью:
- Применить авторегрессионную скрытую марковскую модель для моделирования и сегментации движений в базе данных mocap.
Рекомендации по выполнению задания
1. Вывод формул для авторегрессии и авторегрессионной скрытой марковской модели удобно осуществлять путем введения обозначений
- .
Тогда выражение можно лаконично записать как .
После вывода необходимых формул рекомендуется убедиться в том, что эти формулы переходят в стандартные формулы для оценки параметров многомерного нормального распределения (в том числе в рамках скрытой марковской модели) при обнулении всех A.
2. При тестировании ЕМ-алгоритма рекомендуется отслеживать монотонное возрастание логарифма неполного правдоподобия в итерациях.
Оформление задания
Выполненное задание следует отправить письмом по адресу bayesml@gmail.com с заголовком письма «[ГМ13] Задание 3 <ФИО>». Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Также убедительная просьба строго придерживаться заданных ниже прототипов реализуемых функций.
Присланный вариант задания должен содержать в себе:
- Файл отчёта в формате PDF с указанием ФИО;
- Все исходные коды с необходимыми комментариями.
Генерация выборки из модели авторегрессии | |||||
---|---|---|---|---|---|
X = ar_generate(N, w, A, Sigma, X0) | |||||
ВХОД | |||||
| |||||
ВЫХОД | |||||
|
Если начальная предыстория не задана, то выбирается равной мат.ожиданию процесса авторегрессии.
Оценка параметров авторегрессии | |||||
---|---|---|---|---|---|
[w, A, Sigma, res, logLH] = ar_fit(X, M) | |||||
ВХОД | |||||
| |||||
ВЫХОД | |||||
|
Генерация выборки из авторегрессионной скрытой марковской модели | |||||||
---|---|---|---|---|---|---|---|
[X, T] = arhmm_generate(N, p, R, W, A, Sigmas, X0) | |||||||
ВХОД | |||||||
| |||||||
ВЫХОД | |||||||
|
Если начальная предыстория не задана, то выбирается равной мат.ожиданию процесса авторегрессии, соответствующего сгенерированному состоянию .
Оценка параметров авторегрессионной скрытой марковской модели с помощью ЕМ-алгоритма | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[p, R, W, A, Sigmas, logLH] = arhmm_fit(X, K, M, param_name1, param_value1, ...) | ||||||||||||||||||||||||||||||||||
ВХОД | ||||||||||||||||||||||||||||||||||
|