Оценивание дискретных распределений при дополнительных ограничениях на вероятности некоторых событий (виртуальный семинар)
Материал из MachineLearning.
(Различия между версиями)
м (→Постановка задачи) |
(→Постановка задачи) |
||
Строка 1: | Строка 1: | ||
== Постановка задачи == | == Постановка задачи == | ||
- | Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t \in (Z_+, Z_+, ..., Z_+)</tex>) при условии, что заданы условия на <tex>P(\omega_{A_i}) = X_{A_i}</tex> (где <tex>\omega_{A_i}</tex> - суперпозиция исходов, интегрированных по времени в области <tex>[0,T]</tex>), <tex>P(.)</tex> - функция распределения вероятностей, <tex> | + | Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t \in (Z_+, Z_+, ..., Z_+)</tex>) при условии, что заданы условия на <tex>P(\omega_{A_i}) = X_{A_i}</tex> (где <tex>\omega_{A_i}</tex> - суперпозиция исходов, интегрированных по времени в области <tex>[0,T]</tex>), <tex>P(.)</tex> - функция распределения вероятностей, <tex>X_{A_i}</tex> - заданные вероятности, <tex>i = 1,...,K > \dim(\omega_t)</tex>). |
== Ссылки == | == Ссылки == |
Версия 20:49, 31 июля 2008
Постановка задачи
Задача состоит в восстановлении дискретной функции плотности вероятности (где - элементарные исходы, зависящие от времени , ) при условии, что заданы условия на (где - суперпозиция исходов, интегрированных по времени в области ), - функция распределения вероятностей, - заданные вероятности, ).