Оценивание дискретных распределений при дополнительных ограничениях на вероятности некоторых событий (виртуальный семинар)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Постановка задачи)
(Постановка задачи)
Строка 1: Строка 1:
== Постановка задачи ==
== Постановка задачи ==
-
Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t \in (Z_+, Z_+, ..., Z_+)</tex>) при условии, что заданы условия на <tex>P(\omega_{A_i}) = X_{A_i}</tex> (где <tex>\omega_{A_i}</tex> - суперпозиция исходов, интегрированных по времени в области <tex>[0,T]</tex>), <tex>P(.)</tex> - функция распределения вероятностей, <tex>X_{A_i}</tex> - заданные вероятности, <tex>i = 1,...,K</tex>).
+
Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t \in ( (0|1) , (0|1) , ..., (0|1) ) = ( \delta_D(t-t^{(1)}_1)) * 1 + \delta_D(t-t^{(1)}_2)) * 1 + ... , \delta_D(t-t^{(2)}_1)) * 1 + \delta_D(t-t^{(2)}_2)) * 1 + ... , )</tex>, где <tex>\delta_D(.)</tex> - дельта-функция Дирака. То есть, проще говоря, события разного вида <tex>j</tex> происходят в случайные моменты времени <tex>t^{(j)}_k</tex>) ) при условии, что заданы условия на <tex>P(\omega_{A_i}) = X_{A_i}</tex> (где <tex>\omega_{A_i}</tex> - суперпозиция финальных исходов (интегрированных по времени: <tex>\omega = \int_{0}^{T} {w_t dt}</tex>)), <tex>P(.)</tex> - функция распределения вероятностей, <tex>X_{A_i}</tex> - заданные вероятности, <tex>i = 1,...,K</tex>).
== Ссылки ==
== Ссылки ==

Версия 13:05, 1 августа 2008

Постановка задачи

Задача состоит в восстановлении дискретной функции плотности вероятности f(\omega_t) (где \omega_t - элементарные исходы, зависящие от времени t \in [0, T], T < \infty, \omega_t \in ( (0|1) , (0|1) , ..., (0|1) ) = ( \delta_D(t-t^{(1)}_1)) * 1 + \delta_D(t-t^{(1)}_2)) * 1 + ... , \delta_D(t-t^{(2)}_1)) * 1 + \delta_D(t-t^{(2)}_2)) * 1 + ... , ), где \delta_D(.) - дельта-функция Дирака. То есть, проще говоря, события разного вида j происходят в случайные моменты времени t^{(j)}_k) ) при условии, что заданы условия на P(\omega_{A_i}) = X_{A_i} (где \omega_{A_i} - суперпозиция финальных исходов (интегрированных по времени: \omega = \int_{0}^{T} {w_t dt})), P(.) - функция распределения вероятностей, X_{A_i} - заданные вероятности, i = 1,...,K).

Ссылки

Литература

Личные инструменты