Оценивание дискретных распределений при дополнительных ограничениях на вероятности некоторых событий (виртуальный семинар)
Материал из MachineLearning.
(Различия между версиями)
м (→Постановка задачи) |
(→Постановка задачи) |
||
Строка 1: | Строка 1: | ||
== Постановка задачи == | == Постановка задачи == | ||
- | Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t \in ( | + | Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t \in ( (0|1) , (0|1) , ..., (0|1) ) = ( \delta_D(t-t^{(1)}_1)) * 1 + \delta_D(t-t^{(1)}_2)) * 1 + ... , \delta_D(t-t^{(2)}_1)) * 1 + \delta_D(t-t^{(2)}_2)) * 1 + ... , )</tex>, где <tex>\delta_D(.)</tex> - дельта-функция Дирака. То есть, проще говоря, события разного вида <tex>j</tex> происходят в случайные моменты времени <tex>t^{(j)}_k</tex>) ) при условии, что заданы условия на <tex>P(\omega_{A_i}) = X_{A_i}</tex> (где <tex>\omega_{A_i}</tex> - суперпозиция финальных исходов (интегрированных по времени: <tex>\omega = \int_{0}^{T} {w_t dt}</tex>)), <tex>P(.)</tex> - функция распределения вероятностей, <tex>X_{A_i}</tex> - заданные вероятности, <tex>i = 1,...,K</tex>). |
== Ссылки == | == Ссылки == |
Версия 13:05, 1 августа 2008
Постановка задачи
Задача состоит в восстановлении дискретной функции плотности вероятности (где - элементарные исходы, зависящие от времени , , где - дельта-функция Дирака. То есть, проще говоря, события разного вида происходят в случайные моменты времени ) ) при условии, что заданы условия на (где - суперпозиция финальных исходов (интегрированных по времени: )), - функция распределения вероятностей, - заданные вероятности, ).