Оценивание дискретных распределений при дополнительных ограничениях на вероятности некоторых событий (виртуальный семинар)
Материал из MachineLearning.
(→Общая постановка задачи) |
м (→Частная постановка задачи) |
||
Строка 9: | Строка 9: | ||
== Частная постановка задачи == | == Частная постановка задачи == | ||
- | В частном случае: D=2, <tex>P(\omega_{A_1}) = \sum_{i>j; i,j \in Z_{0,+}} {(i,j)} = Q_1, \; P(\omega_{A_2}) = \sum_{i<j; i,j \in Z_{0,+}} {(i,j)} = Q_2, \; P(\omega_{A_3}) = \sum_{i+j \le T; i,j \in Z_{0,+}} {(i,j)} = Q_3</tex> | + | В частном случае: D=2, <tex>P(\omega_{A_1}) = \sum_{i>j; i,j \in Z_{0,+}} {Pr\{(i,j)\}} = Q_1, \; P(\omega_{A_2}) = \sum_{i<j; i,j \in Z_{0,+}} {Pr\{(i,j)\}} = Q_2, \; P(\omega_{A_3}) = \sum_{i+j \le T; i,j \in Z_{0,+}} {Pr\{(i,j)\}} = Q_3</tex> |
== Ссылки == | == Ссылки == |
Версия 13:39, 1 августа 2008
Содержание |
Общая постановка задачи
Задача состоит в восстановлении дискретной функции плотности вероятности (где - элементарные исходы, зависящие от времени , , где - дельта-функция Дирака. То есть, проще говоря, события разного вида происходят в случайные моменты времени ) ) при условии, что заданы условия на (где - суперпозиция финальных исходов (интегрированных по времени: )), - функция распределения вероятностей, - заданные вероятности, ).
Эмпирические частоты для заданы.
В качестве функционала качества предлагается использовать: , где - оценки на вероятности исходов, которые строятся из элементарных исходов интегрированием по времени и суперпозицией получившихся исходов; сумма берется по полному набору исходов (n - полное число исходов в ), - истинные значения вероятностей.
Частная постановка задачи
В частном случае: D=2,