Оценивание дискретных распределений при дополнительных ограничениях на вероятности некоторых событий (виртуальный семинар)
Материал из MachineLearning.
м (/* Проблема выбора функции и параметризации для маргинальных плотностей (декомпозиция) и подгонка совместной плотности для удовлетворе) |
м (→Общая постановка задачи) |
||
Строка 1: | Строка 1: | ||
== Общая постановка задачи == | == Общая постановка задачи == | ||
- | Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t | + | Задача состоит в восстановлении дискретной функции плотности вероятности <tex>f(\omega_t)</tex> (где <tex>\omega_t</tex> - элементарные исходы, зависящие от времени <tex>t \in [0, T], T < \infty</tex>, <tex>\omega_t = ( \delta_D(t-t^{(1)}_1)) * 1 + \delta_D(t-t^{(1)}_2)) * 1 + ... , \delta_D(t-t^{(2)}_1)) * 1 + \delta_D(t-t^{(2)}_2)) * 1 + ... , ) \in ( (0|1) , (0|1) , ..., (0|1) )</tex>, где <tex>\delta_D(.)</tex> - дельта-функция Дирака. То есть, проще говоря, события разного вида <tex>j</tex> происходят в случайные моменты времени <tex>t^{(j)}_k</tex>) ) при условии, что заданы условия на <tex>P(\omega_{A_i}) = X_{A_i}</tex> (где <tex>\omega_{A_i}</tex> - суперпозиция финальных исходов (интегрированных по времени: <tex>\omega = \int_{0}^{T} {w_t dt} = (i_1, ...,i_D);\; i_k \in Z_{0,+} \; ( k=1,D )</tex>)), <tex>P(.)</tex> - функция распределения вероятностей, <tex>X_{A_i}</tex> - заданные вероятности, <tex>i = 1,...,K</tex>). |
Эмпирические частоты для <tex>\omega_t</tex> заданы. | Эмпирические частоты для <tex>\omega_t</tex> заданы. |
Версия 06:56, 2 августа 2008
Содержание |
Общая постановка задачи
Задача состоит в восстановлении дискретной функции плотности вероятности (где - элементарные исходы, зависящие от времени , , где - дельта-функция Дирака. То есть, проще говоря, события разного вида происходят в случайные моменты времени ) ) при условии, что заданы условия на (где - суперпозиция финальных исходов (интегрированных по времени: )), - функция распределения вероятностей, - заданные вероятности, ).
Эмпирические частоты для заданы.
В качестве функционала качества предлагается использовать: , где - оценки на вероятности исходов, которые строятся из элементарных исходов интегрированием по времени и суперпозицией получившихся исходов; сумма берется по полному набору исходов (n - полное число исходов в ), - истинные значения вероятностей.
Частная постановка задачи
В частном случае: D=2,
В качестве функционала качества можно принять среднее среди функционалов качества для интегральных по времени исходов для деления всего времени на M одинаковых интервалов: , где ( - положительное бесконечно малое число введено, чтобы не учитывать два раза события на границе интервала). Для M=2 и D=2 множество превращается в множество типа , а множество функции плотности вероятности для двух интервалов превращается в , где - количества событий типа i и j, соответственно, которые произошли в интервале [0,T].
- Известны результаты реализации этого случайного процесса, из которых можно построить эмпирическую плотность распределения .
Проблема выбора функции и параметризации для маргинальных плотностей (декомпозиция) и подгонка совместной плотности для удовлетворения связям
Проблемы:
- допустимость перехода к маргинальных плотностям;
- выбор метода оценки параметров. Хорош ли метод максимального правдоподобия для оценки параметров функции распределения, если при оценивании используются только интегральные по времени величины (интегральные эмпирическая функция и интегральная функция распределения вероятностей)).