Спецкурс «Прикладные задачи анализа данных»

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Объявление)
Строка 12: Строка 12:
Важно: от участников потребуется выполнение нетривиальных практических заданий!
Важно: от участников потребуется выполнение нетривиальных практических заданий!
-
Детали появятся в ближайшее время на странице кафедры на сайте machinelearning.ru Дни недели сейчас определяются (рассматриваемые варианты: 4,5,6 пары понедельника, вторника и среды). Можно повлиять на дату мероприятия, написав письмо лектору на почту djakonov@mail.ru
+
Детали появятся в ближайшее время на «[[Математические методы прогнозирования (кафедра ВМиК МГУ)|странице кафедры]]»
 +
(ну и на этой странице). Дни недели сейчас определяются (рассматриваемые варианты: 4,5,6 пары понедельника, вторника и среды). Можно повлиять на дату мероприятия, написав письмо лектору на почту djakonov(собака)mail(точка)ru
== Аннотация ==
== Аннотация ==

Версия 15:49, 2 сентября 2013

Содержание

Объявление

В ближайшее время начнёт работу спецкурс-семинар «Прикладные задачи анализа данных»

Лектор: Дьяконов Александр

Основная цель: практика решения современных задач классификации, прогнозирования, регрессии, рекомендации и т.п., подготовка участников к соревнованиям на платформах Kaggle и Algomost.

Мероприятие проходит в двух режимах:

  • спецкурса – лекции о решении прикладных задач, обучение некоторым системам анализа данных (например R) и т.п.
  • спецсеминара – обсуждение решаемых задач, выработка общих стратегий, разделение работы в рамках участия в соревновании одной командой, мозговой штурм и т.п.

Важно: от участников потребуется выполнение нетривиальных практических заданий!

Детали появятся в ближайшее время на «странице кафедры» (ну и на этой странице). Дни недели сейчас определяются (рассматриваемые варианты: 4,5,6 пары понедельника, вторника и среды). Можно повлиять на дату мероприятия, написав письмо лектору на почту djakonov(собака)mail(точка)ru

Аннотация

2do

Автор программы: Дьяконов Александр Геннадьевич

Отчётность

2do: зачёты

Ссылки

Вводная лекция, которая написана для просеминара.

Глава 12 «Шаманство в анализе данных».

Переработка предыдущего источника в научно-популярную лекцию.

Рассказываются тонкости решения задач, которые умалчиваются в основных курсах.

Подробное описание некоторых простых алгоритмов для прогнозирования туристических временных рядов.

Приведены ссылки на сайты с данными реальных задач анализа данных.

Ещё ссылки

Неплохая короткая демка про соревнования в анализе данных, платформы для соревнований и возможности системы R.

Личные инструменты