Критерий омега-квадрат

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Использование критерия для проверки нормальности)
(Проверка сложных гипотез)
Строка 55: Строка 55:
== Проверка сложных гипотез ==
== Проверка сложных гипотез ==
При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz).
При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz).
-
При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Колмогорова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.
+
При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Крамера-Мизеса-Смирнова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.
Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.
Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.

Версия 17:00, 19 октября 2013

Критерий омега-квадрат, также называемый критерием Смирнова-Крамера-фон Мизеса, используется для проверки гипотезы "случайная величина X имеет распределение F(x)".


Содержание

Описание критерия

Пусть x_1,\dots,x_n - элементы выборки, упорядоченные по возрастанию. Статистика критерия имеет вид

n\omega^2=\frac{1}{12n}+\sum_{i=1}^{n}\{F(x_i)-\frac{2i-1}{2n}\}^2,

где F(x) - теоретическая функция распределения с известными параметрами. То есть, проверяется простая гипотеза.


При объёме выборки n>40 можно пользоваться квантилями распределения n\omega^2, приведенными в следующей таблице:

\alpha 0,900 0,950 0,990 0,995 0,999
n\omega^2(\alpha) 0,3473 0,4614 0,7435 0,8694 1,1679

При n<40 таблицей можно пользоваться с заменой n\omega^2 на

(n\omega^2)'=(\frac{n\omega^2}{4}-\frac{0,4}{n}+\frac{0,6}{n^2})(1+\frac{1}{n}).

Использование критерия для проверки нормальности

В данном случае критерий омега-квадрат (Крамера-Мизеса-Смирнова) используется для проверки сложной гипотезы о принадлежности случайной величины X нормальному закону, параметры которого оцениваются по этой же выборке методом максимального правдоподобия (используются выборочные оценки среднего и дисперсии).

Надо отметить, что распределения статистики критерия различаются для случаев оценивания одного, другого или обоих параметров.

В случае использования выборочных оценок среднего и дисперсии можно воспользоваться критическими значениями, представленными в таблице (Мартынов Г.В.):

\alpha 0,900 0,950 0,990 0,995 0,999
n\omega^2(\alpha) 0,1035 0,1260 0,1788 0,2018 0,2559

Проверка сложных гипотез

При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz). При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Крамера-Мизеса-Смирнова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.

Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.

О применении критерия Колмогорова для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:

Литература

  1. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
  2. Смирнов Н. В. О распределении n\omega^2-критерия Мизеса // Математический сб. 1937.2(44), №5. С. 973-993.
  3. Смирнов Н. В. О критерии Крамера—фон Мизеса // Успехи матем. наук (новая серия). 1949. Т. 4, №4C2). С. 196-197.
  4. Мартынов Г. В. Критерии омега-квадрат. — М.: Наука, 1978.
  5. Kac M., Kiefer J., Wolfowitz J. On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods // Ann. Math. Stat., 1955. V.26. – P.189-211.
  6. [Р 50.1.037–2002. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. – М.: Изд-во стандартов. 2002. – 64 с.[1]]

Ссылки

См. также