Критерий Колмогорова-Смирнова

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Использование критерия для проверки нормальности)
(Примеры задач)
Строка 1: Строка 1:
'''Критерий Колмогорова-Смирнова''' используется для проверки гипотезы <tex>H_0</tex>: "случайная величина <tex>X</tex> имеет распределение <tex>F(x)</tex>".
'''Критерий Колмогорова-Смирнова''' используется для проверки гипотезы <tex>H_0</tex>: "случайная величина <tex>X</tex> имеет распределение <tex>F(x)</tex>".
-
==Примеры задач==
+
 
-
Критерий Колмогорова-Смирнова (''критерий Колмогорова'') применяют в тех случаях, когда нужно проверить, подчиняется ли наблюдаемая случайная величина некоторому закону распределения, известному с точностью до параметров.
+
-
Например, все исходы, выдаваемые рулеткой казино, должны быть равновероятны.
+
-
Предположим, требуется выяснить, можно ли считать некоторую рулетку "честной".
+
-
Для этого следует составить достаточно большую выборку из исходов этой рулетки.
+
-
Чтобы установить, является ли выборка равномерно распределённой, можно воспользоваться критерием Колмогорова-Смирнова.
+
==Описание критерия==
==Описание критерия==

Версия 01:30, 20 октября 2013

Критерий Колмогорова-Смирнова используется для проверки гипотезы H_0: "случайная величина X имеет распределение F(x)".


Содержание

Описание критерия

Классический критерий Колмогорова (иногда говорят Колмогорова-Смирнова) предназначен для проверки простых гипотез о принадлежности анализируемой выборки некоторому полностью известному закону распределения.

Пусть X_n - выборка независимых одинаково распределённых случайных величин, F_n(x) - эмпирическая функция распределения, F(x) - некоторая "истинная" функция распределения с известными параметрами. Статистика критерия определяется выражением:

D_n=\sup_x |F_n(x)-F(x)|.

Обозначим через H_0 гипотезу о том, что выборка подчиняется распределению F(x)\in \mathrm{C}^1(\mathbb{X}). Тогда по теореме Колмогорова при справедливости проверяемой гипотезы:

\forall t>0: \quad \lim_{n \to \infty}P(\sqrt{n} D_n \leq t)=K(t)=\sum_{j=-\infty}^{+\infty}(-1)^j \mathrm{e}^{-2j^2t^2}.

Гипотеза H_0 отвергается, если статистика \sqrt{n}D_n\! превышает квантиль распределения K_\alpha заданного уровня значимости \alpha, и принимается в противном случае.


Примечание: В критерии Колмогорова целесообразно использовать статистику с поправкой Большева: \sqrt{n}D_n+1/(6\sqrt{n}). Распределение этой статистики при справедливости проверяемой гипотезы быстро сходится к распределению Колмогорова и при  n>25  зависимостью от объема выборки можно пренебречь.

Использование критерия для проверки нормальности

В данном случае критерий Колмогорова используется для проверки гипотезы о принадлежности наблюдаемой выборки нормальному закону, параметры которого оцениваются по этой самой выборке методом максимального правдоподобия. То есть, проверяется сложная гипотеза и в качестве оценок параметров нормального закона используются выборочные оценки среднего и дисперсии.

В этом случае (Lilliefors) использовались модифицированные статистики вида:

D_n^*=D_n(\sqrt{n} - 0.01 + \frac{0.85}{\sqrt{n}}).

Критические значения для статистики D_n^* приведены в следующей таблице (Lilliefors):

\alpha 0,15 0,10 0,05 0,03 0,01
D_n^*(\alpha) 0,775 0,819 0,895 0,955 1,035

Проверка сложных гипотез

При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz). При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Колмогорова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.

Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.

О применении критерия Колмогорова для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:

Литература

  1. Kolmogoroff A.N. Sulla determinazione empirica di una legge di distribuzione // Giornale dell` Istituto Italiano degly Attuari. 1933. – Vol. 4. – № 1. – P. 83-91.
  2. Большев Л.Н., Смирнов Н.В. Таблицы математической стати¬стики. М.: Наука, 1983.
  3. Lilliefors H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown // J. Am. Statist. Assoc., 1967. V.62. – P.399-402.
  4. Kac M., Kiefer J., Wolfowitz J. On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods // Ann. Math. Stat., 1955. V.26. – P.189-211.
  5. [Р 50.1.037–2002. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. – М.: Изд-во стандартов. 2002. – 64 с.[1]]

См. также

Ссылки

Личные инструменты