Мультиномиальное распределение независимых случайных величин
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
- | + | '''Мультиномиальное распределение''' — совместное | |
+ | распределение вероятностей '''независимых случайных величин''' | ||
+ | :<tex>\xi_1, \ldots, \xi_k,</tex> | ||
+ | принимающих целые неотрицательные значения | ||
+ | :<tex>n_1, \ldots, n_k,</tex> | ||
+ | удовлетворяющие условиям | ||
+ | :<tex>n_1+\ldots+n_k=n,</tex> | ||
+ | с вероятностями | ||
+ | :<tex>\mathbf{P}(\xi_1=n_1,\ldots,\xi_k=n_k) = \frac{n!}{n_1! \cdots n_k!} p_1^{n_1} \cdots p_k^{n_k},</tex> | ||
+ | где <tex>p_i \geq 0</tex>, <tex>\sum_{i=1}^n p_i = 1</tex>; является многомерным дискретным распределением случайного вектора <tex>(\xi_1, \ldots, \xi_k)</tex> такого, что | ||
+ | :<tex>\xi_1+\ldots+\xi_n = n</tex> | ||
+ | (по существу это распределение является <tex>(k-1)</tex>-мерным, так как в пространстве <tex>\mathbb{R}^k</tex> оно вырождено). | ||
- | ''' | + | Мультииномиальное распределение появляется в так называемой ''полиномиальной схеме'' случайных экспериментов: каждая из случайных величин <tex>\xi_j</tex> —это число наступлений одного из взаимоисключающих событий <tex>x_j, j=1,\ldots,k</tex>, при повторных независимых экспериментах. Если в каждом эксперименте вероятность наступления события <tex>x_j</tex> равна <tex>p_j</tex>, то полиномиальная вероятность равна вероятности того, что при <tex>n</tex> экспериментах события <tex>x_1, \ldots, x_k</tex> наступят <tex>n_1, \ldots, n_k</tex> раз соответственно. |
- | + | Каждая из случайных величин <tex>\xi_i</tex> имеет биномиальное распределение с математическим ожиданием <tex>np_i</tex> и дисперсией <tex>np_i(1-p_i)</tex>. | |
- | + | Случайный вектор <tex>(\xi_1, \ldots, \xi_k)</tex> имеет математическое ожидание <tex>(np_1, \ldots, np_k)</tex> и ковариационную матрицу <tex>B=\| b_{ij} \|</tex>, где | |
- | :<tex>\ | + | :<tex>b_{ij} = \begin{cases} np_i(1-p_i), & i=j,\\-n p_i p_j, & i \not= j.\end{cases}</tex> |
+ | Ранг матрицы <tex>B</tex> равен <tex>k-1</tex> в силу того, что <tex>\sum_{i=1}^k n_i=n</tex>. | ||
- | + | ''Характеристическая функция'': | |
- | :<tex> | + | :<tex>f(t_1,\ldots,t_k) = \left( p_1 e^{it_1}+\ldots+ p_k e^{it_k}\right)^n.</tex> |
+ | При <tex>n \to \infty</tex> распределение случайного вектора <tex>(\eta_1, \ldots, \eta_k)</tex> с нормированными компонентами | ||
+ | :<tex>\eta_i = (\xi_i-np_i)/\sqrt{np_i(1-p_i)}</tex> | ||
+ | стремится к некоторому многомерному нормальному распределению, а распределение суммы | ||
+ | :<tex>\sum_{i=1}^k (1-p_i)\eta_i^2,</tex> | ||
+ | которая используется в математической статистике при построении <tex>\chi^2</tex>-критерия, стремится к <tex>\chi^2</tex>-распределению с <tex>k-1</tex> степенями свободы. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
Версия 08:02, 1 ноября 2013
Мультиномиальное распределение — совместное распределение вероятностей независимых случайных величин
принимающих целые неотрицательные значения
удовлетворяющие условиям
с вероятностями
где , ; является многомерным дискретным распределением случайного вектора такого, что
(по существу это распределение является -мерным, так как в пространстве оно вырождено).
Мультииномиальное распределение появляется в так называемой полиномиальной схеме случайных экспериментов: каждая из случайных величин —это число наступлений одного из взаимоисключающих событий , при повторных независимых экспериментах. Если в каждом эксперименте вероятность наступления события равна , то полиномиальная вероятность равна вероятности того, что при экспериментах события наступят раз соответственно.
Каждая из случайных величин имеет биномиальное распределение с математическим ожиданием и дисперсией .
Случайный вектор имеет математическое ожидание и ковариационную матрицу , где
Ранг матрицы равен в силу того, что .
Характеристическая функция:
При распределение случайного вектора с нормированными компонентами
стремится к некоторому многомерному нормальному распределению, а распределение суммы
которая используется в математической статистике при построении -критерия, стремится к -распределению с степенями свободы.
См. также
- Мультиномиальное распределение зависимых случайных величин
- Мультиномиальное распределение с равновероятными успехами испытаний Бернулли
- Парадоксы мультиномиального распределения
- Биномиальное распределение одной случайной величины
- Биномиальное распределение двух случайных величин
- Биномиальное распределение с равновероятными успехами испытаний Бернулли
- Парадоксы биномиального распределения