Мультиномиальное распределение независимых случайных величин

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(предупреждение)
(удалил предупреждение --- кажется, тут всё чисто)
Строка 1: Строка 1:
-
{{stop|'''Уважаемые коллеги!'''
 
-
Эта статья изобилует грубыми математическими ошибками (начиная с непонимания самой сути математического доказательства), как и другие статьи [[Участник:Vitsemgol|того же автора]]:
 
-
*[[Мультиномиальное распределение зависимых случайных величин]]
 
-
*[[Мультиномиальное распределение с равновероятными успехами испытаний Бернулли]]
 
-
*[[Мультиномиальное распределение независимых случайных величин]]
 
-
*[[Парадоксы мультиномиального распределения]]
 
-
*[[Биномиальное распределение с равновероятными успехами испытаний Бернулли]]
 
-
*[[Парадоксы биномиального распределения]]
 
-
*[[Биномиальное распределение двух случайных величин]]
 
-
Удалить это безобразие и забанить автора — самое простое решение.
 
-
Есть и другой вариант — попробовать помочь всем миром и написать коллективную рецензию, объяснив автору его ошибки.
 
-
Для этого есть страницы Обсуждений статей и [[Обсуждение участника:Vitsemgol]].
 
-
Это большая работа, непосильная для одного человека, но для сообщества вполне осуществимая.
 
-
Коллеги, давайте отнесёмся к проблеме как к исследованию.
 
-
Есть несколько открытых вопросов, которые бросают нам вызов.
 
-
Упрощает ли Вики задачу интегрирования «непризнанного гения» в профессиональное сообщество?
 
-
Способен ли человек, ворвавшийся в чужой монастырь со своим уставом, покаяться и услышать, что ему скажут?
 
-
Откликнется ли хоть кто-то из сообщества?
 
-
Хватит ли нам всем терпимости?
 
-
Это добрый эксперимент, дорогие коллеги!
 
-
Как [[MachineLearning:Администраторы|Администратор]], предупреждаю: увижу «войну правок», эмоции и прочие проявления непрофессионализма — прекращу эксперимент как неудачный и удалю всё.
 
-
— ''[[Участник:Vokov|К.В.Воронцов]] 02:49, 4 ноября 2013 (MSK)''
 
-
}}
 
-
 
'''Мультиномиальное распределение''' — совместное
'''Мультиномиальное распределение''' — совместное
распределение вероятностей '''независимых случайных величин'''
распределение вероятностей '''независимых случайных величин'''

Версия 23:51, 3 ноября 2013

Мультиномиальное распределение — совместное распределение вероятностей независимых случайных величин

\xi_1, \ldots, \xi_k,

принимающих целые неотрицательные значения

n_1, \ldots, n_k,

удовлетворяющие условиям

n_1+\ldots+n_k=n,

с вероятностями

\mathbf{P}(\xi_1=n_1,\ldots,\xi_k=n_k) = \frac{n!}{n_1! \cdots n_k!} p_1^{n_1} \cdots p_k^{n_k},

где p_i \geq 0, \sum_{i=1}^n p_i = 1; является многомерным дискретным распределением случайного вектора (\xi_1, \ldots, \xi_k) такого, что

\xi_1+\ldots+\xi_n = n

(по существу это распределение является (k-1)-мерным, так как в пространстве \mathbb{R}^k оно вырождено).

Мультииномиальное распределение появляется в так называемой полиномиальной схеме случайных экспериментов: каждая из случайных величин \xi_j —это число наступлений одного из взаимоисключающих событий x_j, j=1,\ldots,k, при повторных независимых экспериментах. Если в каждом эксперименте вероятность наступления события x_j равна p_j, то полиномиальная вероятность равна вероятности того, что при n экспериментах события x_1, \ldots, x_k наступят n_1, \ldots, n_k раз соответственно.

Каждая из случайных величин \xi_i имеет биномиальное распределение с математическим ожиданием np_i и дисперсией np_i(1-p_i).

Случайный вектор (\xi_1, \ldots, \xi_k) имеет математическое ожидание (np_1, \ldots, np_k) и ковариационную матрицу B=\| b_{ij} \|, где

b_{ij} = \begin{cases} np_i(1-p_i), & i=j,\\-n p_i p_j, & i \not= j.\end{cases}

Ранг матрицы B равен k-1 в силу того, что \sum_{i=1}^k n_i=n.

Характеристическая функция:

f(t_1,\ldots,t_k) = \left( p_1 e^{it_1}+\ldots+ p_k e^{it_k}\right)^n.

При n \to \infty распределение случайного вектора (\eta_1, \ldots, \eta_k) с нормированными компонентами

\eta_i = (\xi_i-np_i)/\sqrt{np_i(1-p_i)}

стремится к некоторому многомерному нормальному распределению, а распределение суммы

\sum_{i=1}^k (1-p_i)\eta_i^2,

которая используется в математической статистике при построении \chi^2-критерия, стремится к \chi^2-распределению с k-1 степенями свободы.


См. также

Личные инструменты