Участник:Voronov
Материал из MachineLearning.
(→Отчеты о научно-исследовательской работе) |
|||
Строка 10: | Строка 10: | ||
== Отчеты о научно-исследовательской работе == | == Отчеты о научно-исследовательской работе == | ||
- | |||
Строка 17: | Строка 16: | ||
'''Алгоритм генетического программирования для решения задачи прогнозирования''' | '''Алгоритм генетического программирования для решения задачи прогнозирования''' | ||
- | В работе исследовано автоматическое порождение прогнозирующих моделей. | + | В работе исследовано автоматическое порождение прогнозирующих моделей. |
- | Предложен алгоритм для решения задачи моделирования улыбки волатильности | + | Предложен алгоритм для решения задачи моделирования улыбки волатильности |
- | биржевых опционов. В основе алгоритма лежат идеи алгоритмов генетического и | + | биржевых опционов. В основе алгоритма лежат идеи алгоритмов генетического и |
- | аналитического программирования. Проведен вычислительный эксперимент; найдена | + | аналитического программирования. Проведен вычислительный эксперимент; найдена |
модельная функция волатильности. | модельная функция волатильности. | ||
'''Публикация''' | '''Публикация''' | ||
- | ''Воронов C.О.'' | + | ''Воронов C.О.'' |
- | [http://svn.code.sf.net/p/mlalgorithms/code/Voronov2013GeneticProg/doc/Voronov2013GeneticProg.pdf Алгоритм генетического программирования для решения задачи прогнозирования]'' | + | [http://svn.code.sf.net/p/mlalgorithms/code/Voronov2013GeneticProg/doc/Voronov2013GeneticProg.pdf Алгоритм генетического программирования для решения задачи прогнозирования]'' |
// Machinelearning.ru, 2013.'' | // Machinelearning.ru, 2013.'' | ||
+ | Осень 2013, 7-й семестр | ||
- | ''' | + | '''Распознавание текста на изображениях''' |
+ | |||
+ | В работе решается задача локализации текста на изображении. Для нахождения символов на изображении производится поиск экстремальных областей (ER). Используется классификатор, который производит отбор наиболее похожих на текст ER. Качество нахождения позиций текста оценивается по количеству правильно локализованных положений. | ||
+ | |||
+ | '''Публикация''' | ||
+ | |||
+ | Воронов С.О. Распознавание текста на изображениях: технический отчет // Сервер журнала "Машинное обучение и анализ данных" [Электронный ресурс] Url: [http://mvr.jmlda.org mvr.jmlda.org ] (дата обращения: 04.12.2013). | ||
+ | |||
+ | '''Построение обучаемого алгоритма распознавания научного контента в сети Интернет''' | ||
В работе исследованы методы классификации текстовых документов на научные и | В работе исследованы методы классификации текстовых документов на научные и | ||
- | ненаучные. Предложены признаки, позволяющие наилучшим образом обучить | + | ненаучные. Предложены признаки, позволяющие наилучшим образом обучить |
SVM-классификатор для выявления научных материалов среди текстовых документов. | SVM-классификатор для выявления научных материалов среди текстовых документов. | ||
Кроме того, исследовано влияние параметров классификатора на количество ошибок | Кроме того, исследовано влияние параметров классификатора на количество ошибок | ||
- | на контроле. | + | на контроле. Написано приложение, умеющее обучаться и искать наиболее значимые |
+ | признаки. | ||
+ | |||
+ | '''Доклад на научной конференции''' | ||
+ | |||
+ | Воронов С. О. [https://bitbucket.org/RDkL/sci-classifier/downloads/presentation.pdf Построение обучаемого алгоритма распознавания научного контента в сети Интернет] // Труды 56-й научной конференции МФТИ. — 2013. — Управление и прикладная математика. Т. 1. — С. 104—105. | ||
+ | |||
+ | '''Аддитивно регуляризованные тематические модели''' | ||
+ | |||
+ | Разработана структура будущего приложения. |
Версия 01:47, 28 декабря 2013
МФТИ, ФУПМ, 074
Кафедра "Интеллектуальные системы"
Направление "Интеллектуальный анализ данных"
Mailto: rdkl.hrd@gmail.com
Отчеты о научно-исследовательской работе
Весна 2013, 6-й семестр
Алгоритм генетического программирования для решения задачи прогнозирования
В работе исследовано автоматическое порождение прогнозирующих моделей. Предложен алгоритм для решения задачи моделирования улыбки волатильности биржевых опционов. В основе алгоритма лежат идеи алгоритмов генетического и аналитического программирования. Проведен вычислительный эксперимент; найдена модельная функция волатильности.
Публикация
Воронов C.О. Алгоритм генетического программирования для решения задачи прогнозирования // Machinelearning.ru, 2013.
Осень 2013, 7-й семестр
Распознавание текста на изображениях
В работе решается задача локализации текста на изображении. Для нахождения символов на изображении производится поиск экстремальных областей (ER). Используется классификатор, который производит отбор наиболее похожих на текст ER. Качество нахождения позиций текста оценивается по количеству правильно локализованных положений.
Публикация
Воронов С.О. Распознавание текста на изображениях: технический отчет // Сервер журнала "Машинное обучение и анализ данных" [Электронный ресурс] Url: mvr.jmlda.org (дата обращения: 04.12.2013).
Построение обучаемого алгоритма распознавания научного контента в сети Интернет
В работе исследованы методы классификации текстовых документов на научные и ненаучные. Предложены признаки, позволяющие наилучшим образом обучить SVM-классификатор для выявления научных материалов среди текстовых документов. Кроме того, исследовано влияние параметров классификатора на количество ошибок на контроле. Написано приложение, умеющее обучаться и искать наиболее значимые признаки.
Доклад на научной конференции
Воронов С. О. Построение обучаемого алгоритма распознавания научного контента в сети Интернет // Труды 56-й научной конференции МФТИ. — 2013. — Управление и прикладная математика. Т. 1. — С. 104—105.
Аддитивно регуляризованные тематические модели
Разработана структура будущего приложения.