Участник:Voronov

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Отчеты о научно-исследовательской работе)
Строка 36: Строка 36:
'''Публикация'''
'''Публикация'''
-
Воронов С.О. Распознавание текста на изображениях: технический отчет // Вычислительный сервер журнала "Машинное обучение и анализ данных" [Электронный ресурс] URL: [http://mvr.jmlda.org/Voronov2013TextRecognition/start.html mvr.jmlda.org ] (дата обращения: 26.12.2013).
+
Воронов С.О. Распознавание текста на изображениях: технический отчет // Вычислительный сервер журнала "Машинное обучение и анализ данных" [Электронный ресурс] URL: [http://mvr.jmlda.org/Voronov2013TextRecognition/start.html mvr.jmlda.org] (дата обращения: 26.12.2013).
'''Построение обучаемого алгоритма распознавания научного контента в сети Интернет'''
'''Построение обучаемого алгоритма распознавания научного контента в сети Интернет'''

Версия 01:28, 29 декабря 2013

МФТИ, ФУПМ, 074

Кафедра "Интеллектуальные системы"

Направление "Интеллектуальный анализ данных"

Mailto: rdkl.hrd@gmail.com


Отчеты о научно-исследовательской работе

Весна 2013, 6-й семестр

Алгоритм генетического программирования для решения задачи прогнозирования

В работе исследовано автоматическое порождение прогнозирующих моделей. Предложен алгоритм для решения задачи моделирования улыбки волатильности биржевых опционов. В основе алгоритма лежат идеи алгоритмов генетического и аналитического программирования. Проведен вычислительный эксперимент; найдена модельная функция волатильности.

Публикация

Воронов C.О. Алгоритм генетического программирования для решения задачи прогнозирования // Machinelearning.ru, 2013.

Осень 2013, 7-й семестр

Распознавание текста на изображениях

В работе решается задача локализации текста на изображении. Для нахождения символов на изображении производится поиск экстремальных областей (ER). Используется классификатор, который производит отбор наиболее похожих на текст ER. Качество нахождения позиций текста оценивается по количеству правильно локализованных положений.

Публикация

Воронов С.О. Распознавание текста на изображениях: технический отчет // Вычислительный сервер журнала "Машинное обучение и анализ данных" [Электронный ресурс] URL: mvr.jmlda.org (дата обращения: 26.12.2013).

Построение обучаемого алгоритма распознавания научного контента в сети Интернет

В работе исследованы методы классификации текстовых документов на научные и ненаучные. Предложены признаки, позволяющие наилучшим образом обучить SVM-классификатор для выявления научных материалов среди текстовых документов. Кроме того, исследовано влияние параметров классификатора на количество ошибок на контроле. Написано приложение, умеющее обучаться и искать наиболее значимые признаки.

Доклад на научной конференции

Воронов С. О. Построение обучаемого алгоритма распознавания научного контента в сети Интернет // Труды 56-й научной конференции МФТИ. — 2013. — Управление и прикладная математика. Т. 1. — С. 104—105.

Аддитивно регуляризованные тематические модели

Разработана структура будущего приложения.

Личные инструменты