WM-критерий
Материал из MachineLearning.
Строка 35: | Строка 35: | ||
Критерий может быть расширен на случай k выборок за счет использования [[Критерий_Краскела-Уоллиса|критерия Краскела-Уоллиса]] (обобщение U-критерия). | Критерий может быть расширен на случай k выборок за счет использования [[Критерий_Краскела-Уоллиса|критерия Краскела-Уоллиса]] (обобщение U-критерия). | ||
+ | |||
+ | ==Реализация== | ||
+ | |||
+ | * [http://www.mathworks.com/matlabcentral/fileexchange/44995-wmtest Реализация WM-критерия для Matlab] | ||
+ | |||
+ | Пример реализации на языке R: | ||
+ | |||
+ | |||
==Литература== | ==Литература== | ||
Строка 45: | Строка 53: | ||
* [[Критерий знаков]] | * [[Критерий знаков]] | ||
- | |||
- | |||
[[Категория:Прикладная статистика]] | [[Категория:Прикладная статистика]] | ||
[[Категория:Непараметрические статистические тесты]] | [[Категория:Непараметрические статистические тесты]] |
Версия 17:39, 18 февраля 2014
WM-критерий — непараметрический ранговый критерий для проверки принадлежности двух независимых выборок к общей генеральной совокупности с одинаковыми характеристиками рассеяния. В отличие от критерия Зигеля-Тьюки не требует предположения о равенстве средних в выборках.
Коротко, идея метода следующая. По двум выборкам подсчитываются модули разностей значений наблюдений, взятых наугад без возвращения. К получившимся выборкам модулей разностей применяется U-критерий Манна-Уитни о сдвиге.
Содержание |
Примеры задач
Менеджер по кейтерингу хочет проверить, одинакова ли дисперсия количества соуса в упаковке при расфасовке с помощью двух диспенсеров. Каждым из диспенсеров он наполнил 10 упаковок. Возможно, диспенсеры откалиброваны по-разному (нет требования равенства медиан).
- H0 : дисперсия количества соуса в упаковке не отличается для двух диспенсеров.
- H1 : дисперсия количества соуса в упаковке для двух диспенсеров отличается.
Описание критерия
Пусть имеются две простые независимые выборки:
- .
Параметр местоположения неизвестен, предположения о симметрии распределения не делается.
Нулевая гипотеза:
- H0: (Выборки имеют одинаковый разбросс)
Против альтернатив:
- H1:
Подсчет статистики критерия: Генерируем вспомогательные выборки
Алгоритм порождения выборки : из берутся наугад без возвращения пары наблюдений , в выборку добавляется , процесс продолжается до тех пор, пока в не останется наблюдений, либо останется одно наблюдение. Выборка порождается аналогично.
В предположении H0, статистика U-критерия Мана-Уитни имеет табличное распределение.
Критерий может быть расширен на случай k выборок за счет использования критерия Краскела-Уоллиса (обобщение U-критерия).
Реализация
Пример реализации на языке R:
Литература
- Clifford Blair, R., & Thompson, G. L. (1992). A distribution-free rank-like test for scale with unequal population locations. Communications in Statistics — Simulation and Computation, 21(2), 353-371.
- Ramsey, P. H., & Ramsey, P. P. (2007). Testing variability in the two-sample case. Communications in Statistics — Simulation and Computation, 36(2), 233-248.