Спецкурс «Прикладные задачи анализа данных»

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Слушатели)
(Слушатели)
Строка 148: Строка 148:
| LB-1+r
| LB-1+r
| LB-1
| LB-1
-
| 00000
+
| ++++0
-
| 0
+
| 0 отлично
|-
|-
| Долганов Станислав Викторович
| Долганов Станислав Викторович
Строка 230: Строка 230:
| {-7}
| {-7}
| ++++0
| ++++0
-
| -20
+
| -20 '''удовлетворительно'''
|-
|-
| Фонарев Александр Юрьевич
| Фонарев Александр Юрьевич

Версия 19:05, 19 февраля 2014

Содержание

Объявление

В весеннем семестре спецкурс продолжит работу!

Слушатели должны выполнить задание на каникулы.

Подробности - письмом.


Спецкурс начал работу 16 сентября (понедельник) в 16:20 (5я пара).

Лектор: Дьяконов Александр



Важно! Для участия в спецкурсе необходимо было зарегистрироваться.

Сейчас регистрация уже закрыта.

Желающие прослушать спецкурс могут дождаться следующего года.


Основная цель: практика решения современных задач классификации, прогнозирования, регрессии, рекомендации и т.п., подготовка участников к соревнованиям на платформах Kaggle и Algomost.

Мероприятие проходит в двух режимах:

  • спецкурса – лекции о решении прикладных задач, обучение некоторым системам анализа данных (например R) и т.п.
  • спецсеминара – обсуждение решаемых задач, выработка общих стратегий, разделение работы в рамках участия в соревновании одной командой, мозговой штурм и т.п.

Важно: от участников потребуется выполнение нетривиальных практических заданий!

Слушатели

Рассылки материалов делаются только зарегистрированным пользователям, которые перечислены в таблице (см. ниже).

Слушатели, которые перестают делать домашние задания, удаляются из таблицы. За каждое задание можно получить от 0 до 10 штрафных баллов. 10 штрафных баллов понижают итоговую оценку на один балл.

Условные обозначения:

LB - есть в таблице конкурса (при конкурсном задании), LB-k - занято высокое k-е место (среди слушателей спецкурса), +r - сдан отчёт, {-n} - n штрафных баллов, Deleted - слушатель «удалён».


ФИО регистрация задание 1

(kaggle)

задание 2

(venture)

задание 3

(kaggle)

задание 4

(wikimart)

задание 5

(game)

штраф(сумма на 26.10)
Рыжков Александр Михайлович 417 LB+r +r LB+r LB +-+00 0 отлично
Харациди Олег 417 LB+r +r LB+r LB --+00 0 отлично
Шаповалов Никита Анатольевич 201 LB+r {-10} LB {-7} {-7} 00000 -24
Адимов Арсений Владимирович 205 LB+r {-10} LB {-7} {-7} 00000 -24
Рысьмятова Анастасия Александровна 214 LB+r +r LB+r LB -+000 0 отлично
Тавыриков Юрий Евгеньевич 205 LB-2+r +r LB+r LB 00000 0
Трофимов Михаил Игоревич МФТИ4 LB+r {-10} LB-3+r LB-2 00000 -10
Шадриков Андрей 417 LB+r +r {-10} LB 00000 -10
Кудрявцев Георгий Алексеевич 206 LB-1+r +r LB-2+r LB-3 ++000 0 отлично
Софиюк Константин Сергеевич 206 LB+r +r LB-1+r LB-1 ++++0 0 отлично
Долганов Станислав Викторович 206 LB+r +r LB+r {-7} 00000 -7
Тихонов Глеб Николаевич 513 LB+r +r LB+r {-7} +++++ -7 отлично
Купляков Денис 203 LB+r +r LB+r {-7} 00000 -7
Шабашев Фёдор Маркович 417 LB+r {-7} (п.з.) {-7}+r {-7} +++++ -21 удовлетворительно
Ломов Никита 417 LB+r +r LB {-7} {-7} +++00 -14 хорошо
Алёшин Илья 417 LB+r +r {-1} LB+r LB ++000 -1 отлично
Славнов Константин Анатольевич 317 LB+r +r {-7}+r {-7} +нннн -22 удовлетворительно
Шевцова (Подлевских) Алена ВМКвып LB+r {-10} LB {-7} {-7} 00000 -24
Гавриков Михаил Игоревич 517 +r {-6} +r LB {-7} {-7} ++++0 -20 удовлетворительно
Фонарев Александр Юрьевич 517 +r {-3} +r LB {-7} {-7} ннннн -27 удовлетворительно
Дорофеев Николай Юрьевич Яндекс {-10} {-10} LB {-7} {-7} 00000 -34
Игнатов Алексей Николаевич 416 +r {-3} {-10} Deleted(03.12) Deleted
Ромов Петр Алексеевич 517 {-10} {-10} Deleted(20.11) Deleted
Файзи Вахиб маг LB+r Deleted(30.10) Deleted
Кульпинов Владимир Константинович 202 LB {-3} Deleted(30.10) Deleted
Бырдин Александр Владимирович МФТИ4 LB-3 {-3} Deleted(30.10) Deleted
Зак Евгений 517 LB {-3} Deleted(30.10) Deleted

Лекции

Число Лекция Материалы, замечания
16.09.13 Решение задачи [The Big Data Combine Engineered by BattleFin] - прогноз цены на основе многомерного ряда и анонимизированных признаков. Загрузка данных, простые модели, линейная регрессия и случайный лес, сравнение R и MATLAB. Домашнее задание: решить задачу (отчёт). Материалы см. в [ветке форума] соревнования.
07.10.13 Разбор первого домашнего задания. Искусство визуализации данных: признаки в задаче [bioresponse], оценка признаков и фолдов, деформация ответов, устойчивость закономерностей, профили лет (в прогнозировании вр.рядов), плотности, оценка качества признаков с помощью RF и удалений Слайды и материалы высланы по почте участникам.
14.10.13 Продолжение Искусство визуализации данных: Результаты алгоритмов и их линейные комбинации, ручная деформация пространств, визуализация и сглаживание плотностей, построение профилей. Что надо знать о признаках. Визуализация по-вертикали и по-горизонтали. Шумы и шумовые признаки. Задачи [cause-effect-pairs], [GiveMeSomeCredit], [DarkWorlds]. Как начать решать второе домашнее задание. Слайды и материалы высланы по почте участникам.
21.10.13 Вторая задача: мозговой штурм. Оценка среднего, оценка вероятности, оценка плотности. Весовые схемы. Задача [dunnhumby]. Слайды и материалы высланы по почте участникам.
28.10.13 Продолжение Оценка плотности. Весовые схемы. Задача [пробки]. Слайды и материалы высланы по почте участникам.
04.11.13 Праздничный день.
11.11.13 Напоминание: линейные классификаторы и линейная регрессия. Задачи: [JRS12], [NN5], [tourism2]. Мозговой штурм по задаче [see-click-predict-fix]. Слайды и материалы высланы по почте участникам.
18.11.13 Анализ текста: классификация и регрессия. Задачи: [spam]. Ежегодное соревнование [LSHTC]. Слайды и материалы высланы по почте участникам.
25.11.13 Продолжение: Анализ текста: классификация и регрессия. Задачи: [JRS12]. Слайды и материалы высланы по почте участникам.
02.12.13 Случайные леса: программирование, настройка, использование. Построение отдельных деревьев. Параметры стандартных пакетов. Области устойчивости функционалов. Способы генерации новых признаков. Разбор задачи [see-click-predict-fix]. Новая задача [wikimart]. Слайды и материалы высланы по почте участникам.
09.12.13 Продолжение: Случайные леса. Параметры градиентного бустинга. Настройка на нестандартные функционалы. Простые решения задач скоринга. Калибровка ответов алгоритмов. Сведение задач рекомендации к задачам регрессии. Задачи [bioresponse], [WhatDoYouKnow] (предсказывание правильности ответов на вопросы тестов). Слайды и материалы высланы по почте участникам.
16.12.13 Весовые схемы kNN. Примитивные способы настройки линейных комбинаций алгоритмов на нестандартные функционалы качества. Эффективная технология решения задач с разнородными данными и нестандартными функционалами качества. Задачи [PhotoQualityPrediction] (определение качества фотографии по метаданным), [unimelb] (предсказывание успешности выполнения гранта), [VLNetChallenge] (рекомендация видеолекций для просмотра).

Аннотация

2do

Автор программы: Дьяконов Александр Геннадьевич

Отчётность

  • отчёты по решению конкурсных задач (доклады с презентацией + исходники)
  • зачёт с оценкой в конце семестра

Ссылки

Вводная лекция, которая написана для просеминара.

Глава 12 «Шаманство в анализе данных».

Переработка предыдущего источника в научно-популярную лекцию.

Рассказываются тонкости решения задач, которые умалчиваются в основных курсах.

Подробное описание некоторых простых алгоритмов для прогнозирования туристических временных рядов.

Приведены ссылки на сайты с данными реальных задач анализа данных.

Ещё ссылки

Неплохая короткая демка про соревнования в анализе данных, платформы для соревнований и возможности системы R.

Личные инструменты