Пи-величина

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (уточнение)
м (уточнение)
Строка 12: Строка 12:
Случайная величина <tex>\pi(T(x^m))</tex> имеет равномерное распределение.
Случайная величина <tex>\pi(T(x^m))</tex> имеет равномерное распределение.
Фактически, функция <tex>\pi(T)</tex> приводит значение статистики критерия&nbsp;<tex>T</tex> к шкале вероятности.
Фактически, функция <tex>\pi(T)</tex> приводит значение статистики критерия&nbsp;<tex>T</tex> к шкале вероятности.
-
Маловероятным значениям (хвостам распределения) статистики&nbsp;<tex>T</tex> соотвествуют значения <tex>\pi(T)</tex>, близкие к нулю или к единице.
+
Маловероятным значениям (хвостам распределения) статистики&nbsp;<tex>T</tex> соотвествуют значения <tex>\pi(T)</tex>, близкие к нулю.
Некоторые типичные заблуждения, связанные со значением пи-величины:
Некоторые типичные заблуждения, связанные со значением пи-величины:

Версия 17:08, 3 сентября 2008

Пи-величина (англ. p-value) — это наименьшая величина уровня значимости, при которой нулевая гипотеза отвергается для данного значения статистики критерия T.

\pi(T) = \min \{ \alpha:\: T\in\Omega_\alpha \},

где \Omega_\alphaкритическая область критерия.

Другая интерпретация: пи-величина \pi(T) — это вероятность, с которой (при условии истинности нулевой гипотезы) могла бы реализоваться наблюдаемая выборка, или любая другая выборка с ещё менее вероятным значением статистики T.

Случайная величина \pi(T(x^m)) имеет равномерное распределение. Фактически, функция \pi(T) приводит значение статистики критерия T к шкале вероятности. Маловероятным значениям (хвостам распределения) статистики T соотвествуют значения \pi(T), близкие к нулю.

Некоторые типичные заблуждения, связанные со значением пи-величины:

  • пи-величина не равна вероятности истинности нулевой гипотезы; частотная статистика вообще не имеет права приписывать вероятности гипотезам;
  • 1 – (пи-величина) не равно вероятности истинности альтернативной гипотезы;
  • пи-величина не равна вероятности ошибки первого рода;
  • 1 – (пи-величина) не равно вероятности ошибки второго рода;
  • пи-величина не есть вероятность того, что повторный эксперимент не приведёт к тому же решению;

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. Справочник для инженеров и научных работников. — М.: Физматлит, 2006. — 816 с.
  2. Цейтлин Н. А. Из опыта аналитического статистика. — М.: Солар, 2006. — 905 с.

Ссылки

Личные инструменты