Спецкурс «Прикладные задачи анализа данных»

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Объявление)
(Объявление)
Строка 1: Строка 1:
== Объявление ==
== Объявление ==
 +
'''Объявлен набор слушателей на спецкурс.'''
 +
Необходима регистрация! Для этого надо прислать на почту ''djakonov (собака) mail (точка) ru''
 +
 +
'''Тема письма:''' [ПЗАД] Фамилия студента
 +
 +
'''Текст:''' в первой строке через точку с запятой указываются
 +
* Фамилия Имя Отчество,
 +
* Группа (вуз, если из другого вуза),
 +
* В скольких соревнования на сайте Kaggle участвовали (число),
 +
* какие курсы по машинному обучению прослушаны,
 +
* желаемые дни и часы (в формате ПТН, 18-00),
 +
* знакомые языки и системы программирования, включая программы и библиотеки для машинного обучения,
 +
* страница на Kaggle,
 +
* Сколько часов в неделю готовы уделять выполнению практических заданий.
 +
 +
В других строчках (начиная со второй) можно по желанию дать пояснения.
 +
 +
Пример:
 +
''Дьяконов Александр Геннадьевич; 617; 25; ММРО Воронцов; ВТ 18-00, СР 16-20; R, Matlab, Python, Weka, RapidMiner, Liblinear, VW; https://www.kaggle.com/users/3090/alexander-d-yakonov; 8''
 +
 +
'''Посещение спецкурса закрытое, число мест ограничено, регистрация скоро будет закрыта – спешите…'''
 +
 +
 +
'''ДОВОДИМАЯ РАНЕЕ ИНФОРМАЦИЯ:'''
В сентябре 2014 года будет объявлен новый набор слушателей спецкурса.
В сентябре 2014 года будет объявлен новый набор слушателей спецкурса.

Версия 11:53, 5 сентября 2014

Содержание

Объявление

Объявлен набор слушателей на спецкурс. Необходима регистрация! Для этого надо прислать на почту djakonov (собака) mail (точка) ru

Тема письма: [ПЗАД] Фамилия студента

Текст: в первой строке через точку с запятой указываются

  • Фамилия Имя Отчество,
  • Группа (вуз, если из другого вуза),
  • В скольких соревнования на сайте Kaggle участвовали (число),
  • какие курсы по машинному обучению прослушаны,
  • желаемые дни и часы (в формате ПТН, 18-00),
  • знакомые языки и системы программирования, включая программы и библиотеки для машинного обучения,
  • страница на Kaggle,
  • Сколько часов в неделю готовы уделять выполнению практических заданий.

В других строчках (начиная со второй) можно по желанию дать пояснения.

Пример: Дьяконов Александр Геннадьевич; 617; 25; ММРО Воронцов; ВТ 18-00, СР 16-20; R, Matlab, Python, Weka, RapidMiner, Liblinear, VW; https://www.kaggle.com/users/3090/alexander-d-yakonov; 8

Посещение спецкурса закрытое, число мест ограничено, регистрация скоро будет закрыта – спешите…


ДОВОДИМАЯ РАНЕЕ ИНФОРМАЦИЯ: В сентябре 2014 года будет объявлен новый набор слушателей спецкурса.

Поскольку обычно желающих очень много, а работа на спецкурсе подразумевает сильную вовлечённость студентов и небольшое число слушателей, то будет произведён отбор.

Для участия в отборе необходимо:

  • освоить (если его не было в учебной программе) курс Машинное обучение,
  • выступить хотя бы в одном соревновании по анализу данных (см. ниже),
  • Пройти анкетирование (или собеседование в сентябре).

Список допустимых соревнований:

Результат будет учитываться при отборе. Участие в соревновании не гарантирует отбор!

В новой версии спецкурса будет серия лекций по системам Matlab и R.

Кроме того, будут рассмотрены новые темы: например, анализ соцсетей.

Аннотация

Данный курс стал победителем конкурса инновационных учебных технологий.



Основная цель: практика решения современных задач классификации, прогнозирования, регрессии, рекомендации и т.п., подготовка участников к соревнованиям на платформах Kaggle и Algomost.

Мероприятие проходит в двух режимах:

  • спецкурса – лекции о решении прикладных задач, обучение некоторым системам анализа данных (например R) и т.п.
  • спецсеминара – обсуждение решаемых задач, выработка общих стратегий, разделение работы в рамках участия в соревновании одной командой, мозговой штурм и т.п.

Важно: от участников потребуется выполнение нетривиальных практических заданий!

Лектор: Дьяконов Александр



Страницы курсов прошлых лет

Спецкурс «Прикладные задачи анализа данных» (2013 год)


Правила

  • Рассылки материалов делаются только зарегистрированным слушателям курса (перечислены в таблице слушателей).
  • Слушатели, которые перестают делать домашние задания, удаляются из таблицы.

Лекции

Здесь будет выложена программа нового (2014 года) - по мере чтения курса.

Старую программу см. на странице Спецкурс «Прикладные задачи анализа данных» (2013 год).

Отчётность

  • отчёты по решению конкурсных задач (доклады с презентацией + исходники)
  • зачёт с оценкой в конце семестра

Ссылки

Вводная лекция, которая написана для просеминара.

Глава 12 «Шаманство в анализе данных».

Переработка предыдущего источника в научно-популярную лекцию.

Рассказываются тонкости решения задач, которые умалчиваются в основных курсах.

Подробное описание некоторых простых алгоритмов для прогнозирования туристических временных рядов.

Приведены ссылки на сайты с данными реальных задач анализа данных.

Ещё ссылки

Неплохая короткая демка про соревнования в анализе данных, платформы для соревнований и возможности системы R.

Личные инструменты