Статистический анализ данных (курс лекций, К.В.Воронцов)/2014
Материал из MachineLearning.
м (→Задание 4. Прогнозирование) |
м (→Задание 4. Прогнозирование) |
||
Строка 94: | Строка 94: | ||
== Задание 4. Прогнозирование == | == Задание 4. Прогнозирование == | ||
- | + | Для прогнозирования необходимо самостоятельно выбрать уникальный временной ряд из любого источника, например: | |
+ | * Time Series Data Library на https://datamarket.com/data/list/?q=provider:tsdl; регистрация в настоящий момент закрыта, для скачивания можно использовать логин goolars@gmail.com, пароль PSADACC; | ||
+ | * http://www.comp-engine.org/timeseries/browse-data-by-category из категории real-world. | ||
+ | Рекомендуется выбирать ряд от нескольких сотен до нескольких тысяч отсчётов с целым периодом сезонности не больше 20 отсчётов. | ||
+ | Выбранный ряд нужно занести в таблицу https://docs.google.com/spreadsheets/d/1CyqcJ21rbJ-SUZBGDPazwGNv4wPbPSVpXZ5uPRlO6_w/edit?usp=sharing | ||
Предварительные версии отчётов принимаются до '''23:59 13.12''', финальные, по результатам работы с рецензентом — до '''23:59 20.12'''. | Предварительные версии отчётов принимаются до '''23:59 13.12''', финальные, по результатам работы с рецензентом — до '''23:59 20.12'''. |
Версия 19:19, 21 ноября 2014
|
Оценки
Студент | №1 (1) | №2 (1) | №3 (2.1) | Рецензирование №3 (1) | №4 (2.1) | Рецензирование №4 (1) | Дополнительно (1.8) | Сумма за семестр (10) | Оценка |
---|---|---|---|---|---|---|---|---|---|
Алешин Илья | (Подоприхин) | ||||||||
Антипов Алексей | |||||||||
Арбузова Дарья | 1 | 1 | (Петров) | 2 | |||||
Горелов Алексей | 0.9 | (Найдин) | 0.9 | ||||||
Зиннурова Эльвира | 0.9 | 0.9 | (Ульянов) | 1.8 | |||||
Исмагилов Тимур | 0.2 | (Львов) | 1.8 | 2 | |||||
Калиновский Илья | |||||||||
Корольков Михаил | |||||||||
Ломов Никита | 0.6 | 0.7 | (Горелов) | 1.3 | |||||
Львов Сергей | (Сокурский) | ||||||||
Найдин Олег | 1 | 1 | (Зиннурова) | 1.8 | 3.8 | ||||
Никифоров Андрей | 1 | 0.8 | 1.8 | ||||||
Новиков Александр | 0.2 | 0.6 | 0.8 | ||||||
Петров Григорий | 0.9 | 0.8 | (Алешин) | 1.8 | 3.5 | ||||
Подоприхин Дмитрий | 1 | 1 | (Исмагилов) | 2 | |||||
Рыжков Александр | 1 | 1 | (Арбузова) | 1.8 | 3.8 | ||||
Сокурский Юрий | (Ломов) | ||||||||
Ульянов Дмитрий | 0.4 | 1 | (Шадриков) | 1.4 | |||||
Харациди Олег | |||||||||
Шабашев Федор | 0.5 | 0.5 | |||||||
Шадриков Андрей | 0.9 | (Рыжков) | 0.9 |
- Задание считается сданным на момент получения проверяющим письма с отчётом (и кодом, если это указано в задании), при условии отсутствия необходимости внесения дополнений и исправлений.
- Штраф за просрочку сдачи заданий начисляется из расчета 0.1 балла за сутки.
- Для допуска к экзамену необходимо сдать как минимум два задания: хотя бы одно из первых двух и хотя бы одно из последних двух.
- Балл за рецензирование можно получить только при условии сдачи соответствующего задания.
- Дополнительные баллы можно получить, предъявив сертификат по курсу Data Analysis and Statistical Inference: https://www.coursera.org/course/statistics.
- Итоговая оценка по курсу рассчитывается по формуле , где — сумма баллов, заработанных в течение семестра, — оценка на устном экзамене. Округление делается по стандартным правилам.
- Студенты, не набравшие баллов достаточно для получения положительной оценки, к экзамену не допускаются. На каждой следующей итерации сдачи экзамена максимальный балл каждой задачи уменьшается вдвое. При этом можно брать по несколько задач каждого задания, но не больше , где — номер итерации сдачи экзамена. Баллы за рецензирование можно получить только на первой итерации.
Задание 1. Исследование свойств одномерных статистических критериев на модельных данных
Необходимо провести исследование одного или нескольких классических критериев проверки статистических гипотез. Интерес представляет поведение достигаемого уровня значимости (p-value) как функции размера выборок и параметров распределения. В соответствии с индивидуальными параметрами задания необходимо указанным способом сгенерировать одну или несколько выборок из заданного распределения, выполнить проверку гипотезы при помощи соответствующего критерия, а затем многократно повторить эту процедуру для различных значений параметров. По результатам расчётов необходимо построить требуемые в задании графики, среди которых могут быть следующие:
- график зависимости достигаемого уровня значимости от значений параметров при однократном проведении эксперимента;
- график зависимости достигаемого уровня значимости одного или двух критериев от значений параметров, усреднённого по большому количеству повторений эксперимента (например, по 1000 повторений);
- график с эмпирическими оценками мощности одного или двух критериев для разных значений параметров.
В качестве оценки мощности принимается доля отвержений нулевой гипотезы среди всех проверок. То есть, если эксперимент повторялся раз для каждого набора значений параметров, и в из случаев гипотеза была отвергнута на некотором фиксированном уровне значимости (примем ), оценкой мощности будет отношение
Необходимо сдать: отчёт с описанием алгоритма, построенными графиками и выводами (объяснение полученных результатов моделирования, границы применимости критерия и т. д.), а также код на R, Матлабе или Питоне, при запуске которого на экран выводятся графики, соответствующие имеющимся в отчёте.
Пример решения: чувствительность двухвыборочного критерия Стьюдента.
Задание принимается до 23:59 28.09.
Задания 2-4. Работа с реальными данными
Требуется подобрать и применить наилучший статистический метод, позволяющий ответить на вопрос прикладной задачи; обосновать выбор метода, его применимость и оптимальность. Помимо выводов, касающихся математических особенностей решения, необходимо в терминах предметной области сформулировать выводы, которые могли бы быть понятны гипотетическому заказчику-нематематику.
Необходимо сдать: подробный отчёт по проведённому исследованию, содержащий визуализацию исходных данных, описания и выводы каждого этапа анализа — используемые методы, обоснование их применимости, графики.
По заданиям 3 и 4 отчёт каждого студента рецензируется назначенным одногруппником. Задачей рецензента является проверка корректности выбора метода решения, полноты его применения и понятности изложения. Рецензент получает балл, если:
- его собственная работа засчитана;
- либо в рецензируемой работе устранены все недостатки и она принимается с первого раза, либо указан полный список недостатков работы, устранить которые не удалось.
Задание 2. Проверка гипотез
Задание принимается до 23:59 18.10.
Задание 3. Регрессия
Предварительные версии отчётов принимаются до 23:59 20.11, финальные, по результатам работы с рецензентом — до 23:59 27.11.
С 29.11 по 7.12 проверки заданий не будет.
Задание 4. Прогнозирование
Для прогнозирования необходимо самостоятельно выбрать уникальный временной ряд из любого источника, например:
- Time Series Data Library на https://datamarket.com/data/list/?q=provider:tsdl; регистрация в настоящий момент закрыта, для скачивания можно использовать логин goolars@gmail.com, пароль PSADACC;
- http://www.comp-engine.org/timeseries/browse-data-by-category из категории real-world.
Рекомендуется выбирать ряд от нескольких сотен до нескольких тысяч отсчётов с целым периодом сезонности не больше 20 отсчётов. Выбранный ряд нужно занести в таблицу https://docs.google.com/spreadsheets/d/1CyqcJ21rbJ-SUZBGDPazwGNv4wPbPSVpXZ5uPRlO6_w/edit?usp=sharing
Предварительные версии отчётов принимаются до 23:59 13.12, финальные, по результатам работы с рецензентом — до 23:59 20.12.